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Preface

RELIABILITY IN COMPUTATIONAL MECHANICS

Much of what engineers and scientists do is to model natural phenomena. They develop

mathematical models of nature so as to study and predict the behavior of physical systems. The
remarkable advances in technology over the last half century attest to the success of this approach.
Mathematical models do indeed :work."Their use represents a proven approach toward scientific
discovery and engineering analyses and design, and one can safely predict that the confidence in
results of mathematical modeling will grow as further proof and experience accumulates as to their
utility and their reliability. Indeed, it is this latter quality, reliability, that emerges as the key to

further progress in computational mechanics.

There has been growing concern about the issue of reliability in computational modeling in
recent years.\ Success of computational modeling of certain classes of linear problems may have
lulled many'nto a false sense of confidence in computed results. Exactly how reliable are
contemporar computational modeling procedures? How can this reliability be assessed? What
factors aff( it? How can reliability be improved? Indeed, what directions must future research in
computaional modeling take to increase reliability of the more sophisticated models needed to
simt ate phenomena of importance in engineering?

-T es were the issues that led to the organization of the Workshop on Reliability in
Computational Ne c eld at Lakeway, Austin, Texas in October, 1989. An international
group of mathematicians, en rs, and scientists working in computational mechanics met for
three days to discuss and study this 'ect. This volume contains invited papers and selected
contributed papers presented at this meeting. The papers presented at the Workshop fell into four

broad categories:

1). Mathematical modeling'
2) A priori analysis, including principles of convergence, robustness and their reliability
3) A posteriori analysis, including adaptive methods' and

4) Computer aspects of modeling such as mesh generation, solid modeling and their
reliability.-

In addition, papers on parallel computing, applications to practical problems, selection of
benchmark problems for code verification, and reiated issues were discussed. The majority of
papers focused on finite element methods and their applications, but a number of papers also dealt

with boundary element methods, finite difference methods, and spectral methods as well. (t[<z)
The order of the papers presented in the present volume essentially follows that of the order

in which they were presented at the Workshop and this order was selected primarily to present a
conneted s-qtnce of presentations covering the major topical areas. The papers by Bathe, Lee,



and Bucalem; Desai, Wathugala, Sharma, and Woo; Babuska, Shephard, Baehmann, Georges,
and Komgold; and Noor, Burton, and Peters dealt with issues of developing mathematical models
of engineering analysis. Issues of canvergence and a priori error estimation are dealt with in the
papers by Brezzi and Bathe; Szabo; Cowsar, Dupont and Wheeler, and Arnold. A posteriori error
estimation and adaptivity are discussed in the papers by Ewing, Zienkiewicz and Zhu; Oden,
Demkowicz, Rachowicz and Westermann; Planck, Stein and Bischoff; Johnson; Bank and Welfert;
and Wang and Carey. Applications and computational issues are taken up in the papers of
Benantar, Biswas and Flaherty; Shephard, Baehmann, Georges, and Korngold, and to an extent
were dealt with in part in a number of the other papers mentioned above.

The invited papers at this meeting were organized so as to present not only a tutorial style
presentation of basic techniques in modeling, a priori and a posteriori error estimation, but also to
deal with applications of these subjects to contemporary problems. Thus, the volume includes an
interesting mixture of application of existing methods to issues of reliability as well as studies of
new methods that touch upon or depend upon the reliability of computational techniques in
mechanics.

At the end of the workshop, a number of principal conclusions were identified which
generally reflect the results of the papers collected here. A summary of these is given as follows:

1. Reliability in computational mechanics is strongly affected by the choice of the
mathematical model, and in most instances there is wide latitude ir possible choices of models,
boundary conditions, material properties. loads, initial conditions, etc. Minor differences in
modeling features can create dramatic changes in results. The general problem of model design is
classical in mechanics and is difficult to formulate in precise terms owing to the difficulty in
specifying what an table or optimal model is in specific applications. Very often, one model
is acceptable for si one feature of a problem (e.g. energy or stress-concentration factor)
but this same- model , in A-,uate For simulating other features.

Some progress in qiiantifying we modeling problem was reported in the Workshop in the
context of hierarchical models of beams, plates, and shells in which the three-dimensional linear
elasticity solution is viewed as the standard to which other models are compared. Similar modeling
programs are under study for nonlinear materials wherein a given material response is presumed to
be modeled by theories which form a part of a hierarchy of material models. Further work in this
area is needed as the subject is fundamental to engineering analysis and design.

2. Once a mathematical model of a natural event is defined, the problem reduces to one of
numerical analysis and computation. The reliability of the computational model has become an
issue cL increasing concern as computational. models are used with increasing frequenicy in
engineering designs. The use of a posteriori error estimates has become an accepted means for
assessing and controlling computational error.



3. Theories and methods for aposteriori error estimation are available for certain classes of
linear elliptic problems. Additional work on the mathematical theory supporting these estimates is
needed, but significant progress has been made in the last three to five years. Many of these

methods are being used in other classes of problems with mixed success. Analyses of error
estimates for nonlinear and time dependent problems is needed. Some progress in these areas was
evident at the Workshop, including estimates of errors in Euler and Navier Stokes equations in
computational fluid dynamics and in error estimation for parabolic and hyperbolic partial
differential equations.

4. A priori error estimation continues to be important in assessing the convergence
properties of various numerical techniques. Equally important, a priori error analysis provides a

basis for the design of acceptable numerical schemes and for the comparison of one scheme with
another. However, a new practical use of existing a priori estimates is used as a basis for adaptive
h- and p-refinement. Several techniques for adaptive finite element methods were presented in the

Workshop that effectively used apriori estimates as a basis for error control and mesh adaptation.

5. Many of the concepts and strategies of adaptive finite element methods lend themselves
to parallel computation. New results on parallelization of adaptive methods suggest that significant

speed-up times in large scale computation can be realized with parallel-adaptive algorithms. This is
a relatively new field, but its potential in improving speed and reliability of engineering
computations is very great.

6. Adaptive p and h-p methods are now under study which exhibit exponential rates of
convergence. Work needs to be done to t.ontrol and minimize the computational overhead using
such methods. The possibility of delivering exponential convergence rates in pracfcal engineering

simulation is very significant; if achieved, and results presented at the Workshop clearly show that
such convergence rates are not uncommon in p- and h-p methods, then these approaches may
emerge as the most important modeling methods available. In principle, such methods can give
results of a specified accuracy on a machine with a fixed memory, that cannot be attained by any

conventional (low order, unadapted) method.

7. Mesh generation techniques continue to be a crucial issue in computational

modeling. Much of current mesh technology was designed for structured meshes and conventional
finite difference and finite element methods. New developments in adaptivity make use of these

techniques obsolete Pnd a ew era of mesh generation is imminent. New techniques for efficient
generation andadaptation of two and three dimensional meshes which are based on developing
ideas in adaptivity, p- and h-p representation, moving mesh methods embedding techniques,
zoning methods, and general mesh optimization concepts are emerging in contemporary

'fi __ _ _ ___ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ __ _ _ _ _ __ _ _ _ _ _ _ _ _



computational mechanics.

The Workshor established that reliability of computational modeling is an issue of growing
concern across all fields of engineering and stands as a key issue to future progress in
computational mechanics. Fortunately, many new developments in numerical modeling and
analysis are emerging that should have a significant impact on reliability in computational

mechanics. Future research directions should focus on work in making more precise and rigorous
guidelines for the mathematical modeling process its elf, on a priori and on a posteriori error
estimation, on developing adaptive methodologies, on parallel computing, and on mesh generation.
On a more applied .evel, the sensitivity of users of computational methods to issues of reliability
must be sharpened if the full value of computer modeling is to be realized, and this can be done if
educators, developers, and users of computational modeling insist on a higher level of reliability
and on a means to assess it.

J. Tinsley Oden
The University of Texas at Austin
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ADAPTIVE GRIDS FOR COUPLED VISCOUS
FLOW AND TRANSPORT

K.C. Wang and G.F. Carey

University of Texas at Austin

Abstract
An adaptive grid refinement and coarsening scheme in two dimensions for bi-

quadratic elements is developed. This has been incorporated in a two-dimensional
- finite element program for steady and transient generalized Newtonian flow problems.

Numerical results are given for Navier-Stokes and power law non-Newtonian flow cal-
culations as well as coupled fluid flow and transport problems including free surfaces,
theromocapillary flows, die swell, and electro-rheological flows.

1 INTRODUCTION

The need to obtain accurate finite element solutions efficiently for viscous flow calcula-

tions, has stimulated the development of adaptive refinement procedures for automatically

improving the grid and solution. Ideally, the finai mesh so obtained should be graded into

regions where the solution and its derivatives vary significantly so that the error on the do-

main is uniformly small. Research on this subject primarily concerns the following topics:

Development of reliable a posteriori error estimates to determine where refinement is war-

ranted (e.g. see Babuika and Rheinboldt [1]); development of refinement data structures for

efficient storage (e.g. see Bank and Sherman [51); and incorporation of fast iterative solution

procedures (e.g. see McCormick [22], Carey and Humphrey [8]). Other contributions in this

area and related references are collected in the monographs edited by Shephard and Gal-

lagher [31], Ghia and Ghia [17], Lohner et al. [20], Babuika et al. [3], Develoo et al. [14],

and Carey et al. [12].
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In the present study we focus on the development of a refinement data structure and

apply this to viscous flow and transport problems including applications with free surfaces.

Both Navier-Stokes problems and power law non-Newtonian flows are considered. Here

we present a refinement data structure for 9-node biquadraic elements. Previous studies

(e.g., Babuka and Rheinboldt [2]? Rheinboldt and Mesztenyi [28], Bank and Sherman [5],

Sharma and Carey [30], Jiang and Carey [19], Ludwig et al. [21]) have cAsidered the

implementation of adaptive refinement algorithms for triangular and bilinear elements. In

a different setting, there has been work on solution enhancement by increasing polynomial

degree (p-refinement) as in the studies of Szabo [33]. One can also combine mesh refinement

with polynomial enhancement (Rank [27]). However, the logic and use of these hierarchic

bases and the approach is substantially different from the present work. The data structure

employed is an extension of that developed by Bank and Sherman [5] for linear triangles

and more recently by Sharma and Carey [30] for bilinear quadrilaterals. This data structure
stores a small amount of data for efficient construction of the system and solution. For steady

(state flow problems, nonlinear solution is carried out by Newton iteration in conjuction with

a line-search strategy. For flows at higher Reynolds numbers, incremental continuation in

the Reynulds number is also employed. The procedure has also been extended for analysis

of transient flows so that bet refinement and coarsening of the grid is permitted during

the time-stepping procedure. In this way fine features of the flow structure can be followed

throughout the flow field.

2 Viscous Flow and Transport Equations

The class of problems considered in this work are those described by the viscous flow and

energy transport equations. The fluid motion is further assumed to be two-dimensional (or

axisymmetric), and laminar. The fluids are considered to be incompressible, Newtonian, or

non-Newtonian (such as power-law or Bingham fluids). The governing equations are derived

from the basic physical principles of conservation of mass, linear momentum and energy,

together with consloitutive equations which relate the stress to the rate of deformation, heat

C 2



flux to the temperature, and density to the temperature. The resulting equations for steady

flow can be writtk=n in Cartesian tensor form as follows:

PUjUij ' rj + pgj (1)

Uii 0 (2)

PcUT,i = --q,i + + pq, (3)

wbere p is density, ui is velocity, gi is the gravity vector, rij is the total stress, cp is the heat

capacity, T is temperature, q is the heat flux, 4 represents viscous dissipation, and qo is the

volumetric heat source. In this study we consider flow conditions where D is negligible.

The above equations represent, in general, a coupled system that requires boundary

conditions on both the fluid motion and the energy transport. The necessary boundary

conditions are of the standard type and ccinsist of specified velocities or tractions for the

momentum equations and specified temperature or heat flux for the energy equation. There

is one other type of boundary condition requiring further discussion here which ,:oncerns the

condition along a free surface. The most common example of this type of problem is exit

flow of a jet as in the die-swell example considered later. Along the free surface the normal

component of the surface traction balances the external pressure and surface tension and the

tangential component is zero. That is,

rijnj = p.ni+ - + ni (4)

= 0 (5)

where T 'j and sj are unit vectors normal and tangential to the free surface, p. is the ambitnt

pressure, -f is the surface tension, and R1 , R2 are the principal radii of curvature. In this

work, si .face tension effects are considered to be negligible. Also, without loss of generality,

the ambiernt pressure may be set to zero. Thus, the appropriate free surface boundary

conditions correspond to a vanishing of the normal and tangential stresses along the free

surface. However, the shape of the free surface is not known a priori and must be located

as part of the solution.
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Part of the present research is directed towards the analysis of shear thinning fluids and

the related solution algorithms in finite element models. The term "generalized" Newtonian

fluid has also been used for this type of non-Newtonian fluid in the literature by Bird et

al. [6], Gartling [15] and others. The form of the constitutive equation for this type of

non-Newtonian fluid is given by

Ti, = -p + 29Dq1  (6)

-where ri is the total stress tensor, p is the pressure, 6ij is the unit tensor, Di1 is the rate of

deformation tensor

Di 1= (u j + uj,j) (7)

and the apparent viscosity q is a function of the shear rate. A variety of models for n have

been proposed and correlated with experimental data. In this work we consider power-law

models since they have relatively simple form but are extensively used in industry. In this

case

where K is the consistency factor, 12 = tr(D2) is the second invariant of Di1, and n > 0 is

the power law index. One of the significant features of power law fluids is the shear thinning

effect, in which the apparent viscosity decreases with increasiug shear rate, when 0 < n < 1.

For an isotropic material, the heat flux can be written as qi = -kT where k > 0

is the thermal conductivity. For non-isothermal flows, an extended form of the Boussinesq

approximation (Gray and Giorgini [18], McLay [231) is used to accommodate buoyancy forces.

This allows the fluid properties to be functions of the thermodynamic state and density to

vary with temperature according to p = poll - P(T - T.)] where subscript o refers to a

reference state, and f > 0 denotes the volume expansion coefficient. For isothermal flows

p = po = constant which is simply the assumption of incompr-ssibility.

C 4
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3 Finite Element Formulation

Consider a flow domain S1 where 8i is the total boundary enclosing the domain, afZU
and afIT are parts of the boundary with specified velocity components and temperature

respectively. On &I - afl. and l - aSIT traction and flux or mixed boundary conditions
apply. Beginning with the basic equations (1)-(3) and constitutive equations (6)-(8), a

Galerkin-based weighted residual method, (e.g., see Carey and Oden [9]) leads to a weak

form of the basic equations

j(pou~,,v, + 1rijvi - pv,ji + pogiTvj)dfl = ji plg,(1 + ,T0 )vidf'

+ f-env lrijvinids (9)

j.qui,id = 0 (10)

j(pocuiT,iw + kT,jw,)dfl = kT,iniwds

+fr'Poq.wdQ (11

for all admissible test functions vi, q, w with vi = 0, w = 0 on those parts of the boundaries
aft,, and O0SI. where ui and T are specified. The surface integrals involve the applied surface
stresses (tractiond) and heat flux and permit these to be introduced as natural boundary

conditions for the variational problem.

In a mixed finite element formulation we approximate the velocity, pressure and tem-
perature using piecewise-polynomials Let V, ph and 0h be the approximation spaces so

determined. The finite element problem is to find uhfVh, phePh, and ThgOh satisfying the
essential boundary conditions and such that

j. [Po(uj)h(Uij)h(Vi)h + (rij)h(vj)h] dl - j [pj(.,i), - pogTh(vj)h] dfl

= f8fh-8( h (riI)h(nj)h(vi)h ds

+ f pog,(1 + /To)(Vi)hdQ (12)

qh(vj)Adfh = 0 (13)

/
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Lh[Pp(uJ)h(T1 i)hWh + (kTji)h(W,i)h] dfl 2 191-n~ (14)~j~w~d
+ Io poq, whdS1 (14)

hold. for all admissibli functions VhAV h , qhePh and wh Oh and with rj given by (6) - (8).

Introducing finite element expansions for uh, Ph and Th and finite element test bases for

Vh, qh and wh into (12)-(14) and integrating, we obtain a system of non-linear algebraic

equations which can be written in matrix notation as

C(u)u+Ku+BT-Qp=F
-QTU =0 (15)

D(u)T +.LT = G

The nonlinear system above may be solved in either fully coupled or iteratively decoupled

form. For the coupled flow and transport considered here we use the fully coupled form
since this is applicable to a wider class of flows. The nonlinear algebraic system (15) can be

expressed conveniently as

Wg()=o (16)

where z represents the vector of nodal velocities, pressures and temperatures. In the present

analysis, the biquadratic nine-node velocity, bilinear four-node pressure element is employed.

(This element does not admit oscillatory spurious pressure modes.) For flow at low and mod-

orate Reynolds numbers the nonlinear system can be solved efficiently by Newton iteration

of the associated Jacobian system

J6= -g (17)

where 6' is the correction in the solution vector and the Jacobian matrix J is evaluated

at the solution for the current iterate i. This solution procedure can be easily combined

with incremental continuation in the Reynolds number or arc-length continuation for more

demanding nonlinear flows.

In the case of the transient viscous flow problem, the nonlinear algebraic system (16) is

replaced by the semidiscrete system

Mi + g(z)=O (18)

C 6



which is integrated numerically in time from specified initial data.

In the following studies we also consider power law fluids, which again lead to steady and

transient approximate problems of the form given in (17) - (18), where now the nature of

the nonlinearity also depends upon the index for the fluid. For low power law index the fluid

exhibits shear thinning and this can cause problems with the convergence of the Newton

iteration. If a line search strategy is included in the algorithm, then convergence with the

shear thinning fluids can be achieved.

Solution of the linear Jacobian system in (17) or the corresponding linear implicit systems

arising from the semidiscrete formulation (18) is achieved using a frontal solver. An integral

part of any frontal solver is the prefront algorithm which establishes pointers related to the

element connectivity to be used in the frontal solution. In the present case the mesh is

unstructured (containing constrained nodes) and more importantly, the mesh changes as the

refinement procedure is carried out. In the case of the steady flow calculations, the initial

mesh is coarse and mesh refinement is monotonic from this initial coarse grid. This means

that we consider only refinement of the grid when the steady state computations are required,

whereas both refinement and recombination are involved in the unsteady computations.

Following each refinement step the prefront scheme is again called to generate the new

de3tination vectors for the sparse solution algorithm. In this way the efficiency of the frontal

scheme is not degraded by the adaptive refinement.

4 Adaptive Mesh Refinement

Of paramount importance to an effective data structure supporting an adaptive mesh

refinement scheme are: 1) storage requirements; 2) CPU time; and 3) ease of implementation.

The data structure described here stores a small amount of data for efficient construction

of this system and numerical solution, thereby providing a good balance between storage

and computation overhead. Moreover, the data structure is logically separate from the finite

element analysis and hence can be incorporated into other existing finite element codes.

The basic data structure is a quadtree, defined by refining quadrilateral elements to

t7



(" _)

a quartet of subelements in any given refinement step. These subeiements may be later

individually subdivided to further quartets. A pointer system links different levels in the

quadtree so determined (Carey, Sharma, and Wang, (11]). To ensure a smooth transition

from coarse to fine grid size in the mesh and to simplify the data structure, no two neighboring

elements are permitted to have a level difference greater than one. This strategy is commonly

employed in other adaptive refinement codes using linear elements for similar reasons. The

adaptive refinement procedure, therefore, is recursive: If the error indicator for a given

element is large and the element is to be refined, then neighbor element information is

needed to determine the level of the adjacent elements. When the need to refine implies that

the level rule would be violated, the corresponding neighbor element must first b,; refined.

This in turn implies that its neighbors must be interrogated and so on recursively until no

level violation is encountered.

Error indicators based on the solution for the current mesh guide the refinement proce-

dure. Traditional error estimates in finite element analysis consist of a prioi global bounds

(which yield theoretical asymptotic rates of convergence depending on the characteristic mesh

size. For adaptive refinement, local computable error estimators and indicators are needed

(for example, see Babuika and Rheinboldt, [2], Bank [4]). Several forms of error indicators

are currently in use. The most popular strategies employ element interpolation error es-

timates or residuals. The residual associated with the weak statement of a given problem

represents the amount by which the differential equation is not satisfied locally (in a sense

similar to truncation error in finite difference approximation). Since biquadratic elements

are used in the present study, the L 2 norm of the interior element residual is easy to calculate

and has been used in the numerical experiments described later. (For potential problems

in which linear elements are used it is necessary to compute the interface jumps, e.g., see

Sharma and Carey [30].) In this study we use Gaussian quadrature to compute the L 2 norm

of the residual for each element; this is then normalized according to element size. The mean

and standard deviation of residual norms are then computed. If the normalized error norm of

an element exceeds the mean error by an amount more than the standard deviation, we refine

the element. For problems involving energy transport, the residual norms of the momentum
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and the energy equations are computed separately. The mean and standard deviation of

residual norms for the momentum and the energy equation are also computed separately. If

the normalized error measure for either the momentum or the energy equation of an element

exceeds the corresponding mean error by an amount larger than the corresponding standard

deviation, we refine the element. The procedure stops when the mean residual is reduced to

the level of the best residual in the initial mesh, or a specified fraction of its original value.

The solution changes may also be monitored as part of the stopping criterion.

One of the most critical points in the design of adaptive refinement software is the data

structure. A poorly designed data structure may necessitate excessive storage and not lend

itself to efficient refinement. In recent years several data structures have been developed

and implemented into computer packages. For example, the data structure proposed by

Rheinboldt and Mesztenyi [28] employs a general labelled tree and poses no restrictions on

the order of irregularity (no level restriction between neighboring elements) of the mesh.

It has a set of specialized algorithms which allow efficient traversal of the tree structure

and linear solution based upon nested dissection techniques (see George [16]). The data

structure presented by Bank and Sherman [5] provides efficient storage and permits adaptive

refinement of linear triangles together with a multigrid solution algorithm. Rivara [29] uses

a "molecular List" structure for adaptive conforming triangulation with a multigrid solution

method. The data structure presented by Diaz et al. [13] is a modification of that by

Rheinboldt and Mesztenyi, to support both mesh refinement and mesh recombination for

time dependent problems.

The principal information describing our quad-tree data structure for biquadratics is con-

tained in two integer arrays of dimension 8 x max e and 2 x max n, respectively, where max e

and max n are the maximum number of elements and nodes respectively in the mesh. The

coltimns of the first array contain pointers and nodal numbers in order to track connectivity

of new elements created by refinement. Consider an element with nodal numbers as shown

on the left of Figure 1. After refinement the nodal numbers of the refined quartet are shown

on the right part of the-figure. Columns j through j + 3 of the first array contain the in-

formation for the quartet, arranged as shown in Figure 2. Here F, L, and MF denote the

9



father, level and macro father (user-defined element) of the quartet; Sj is the son pointer .)

of element j; indices 1-9 are nodal numbers of the father element, Ek, Ek ' define mid-side

nodes along edge k of elements j aid j + 1 where [k = mod (j - 1, 4) + 1]; Nk is the normal

node between j and j + 1 (with k = 1, 2, 3 or 4) and Ck is the center node of element j

[ with k = mod (j - 1,4) + 1]. The second array contains information related to the nodes.

Using this Table the type of node (boundary, constrained, etc.) and neighbor information

can easily be determined. (See Carey et al. [11] for a more detailed description of these two

arrays.) E' E4 7 3 4 3 7 3

j+3) Q+2)

E C N .C E'
4 4 3 3 2

N 9 N

IN C
El IC 2 E

M 4 0) 2

5 2 E S E' 2

Figure 1: Biquadratic element numbering and node types for refinement scheme (see also
Figures 2 and 3)

The actual refinement process requires specification of the entries of these two arrays.

Some of the data for these arrays is standard and trivially known from the parent element

data. The remaining information can be computed directly from the existing data structure.

This standard information includes: nodal numbers of a given element, neighbors of an

element, father of an element, level of an element, and node fathers of a given node.

As mentioned earlier, this refinement procedure can be integrated into an existing finite

element code without difficulty. In this work, we interface this refinement procedure with a

2-D incompressible generalized Navier-Stokes finite element code, which uses a frontal solver

technique to solve the Jacobian system for Newton iteration. Following are modifications we

have made in order to interface with this refinement procedure.

(1) Before the refinement procedure can be invoked, we need to initialize the macro-edge

10
.)



column j columnj+1 columnj+2 columnj+3

F E E' N
1 1 I

L E E# N
2 2 2

MF E E N
3 3 3

C * E E' N
1 4 4 4

C 4 7 32

C 8 9 6
3

C 1 5 24

S S S S
j j+ j+2 j_3_ _

Figure 2: Connectivity array for quad-tree refinement data structure.

array which defines the neighbors of macro elements.

(2) An array to store son pointers of macro elements is also needed.

(3) Following each refinement step, the pre-front schemeis again called to generate the

new destination vectors for the frontal sparse solutin algorithm. The pre-front routine

utilizes "nicknames" for the nodes consisting of the node number and degrees of freedom

of the node. Note that there is no degree of freedom associated with exposed nodes and

we are using pre- and post-matrix multiplications to handle the constraint condition

on exposed nodes. Therefore, the nickname of an exposed node should be replaced

by the nickname of a node of the father element used to interpolate the value at this

exposed node. Consider a finite element grid as shown in Figure 4. Nodes 22 and 23

are exposed uodes following a refinement. Solutions at nodes 22 and 23 are obtained

through interpolation of nodes 2, 3, and 6. Therefore, we use the nickname for node 3

11



USER EXPOSE NORMAL BOUNDARY CENTER

0 .IVFI IVF1 IVFI IVFI

ibc(i) F rI7F2 ibc(i) .0

Figure 3: Vertex array for quad-tree refinement data structure

in place of the nickname for node 23 and nickname for node 2 in place of nickname for

node 22.
(

(4) For boundary nodes with Dirichlet boundary condition specified, interpolation is used

to determine the boundary data of nodes created via refinement.

(5) During the matrix assembly phase a matrix pre- and post- multiplication procedure

has been implemented to handle exposed nodes. This procedure can best be explained

by means of an example. Again consider the finite element grid as shown in Figure 4.

Nodes 22 and 23 are exposed nodes following refinement to the quartet on the right. For

the biquadratic basis considered here, the constraint equation for node 23 of element 3

is simply U23 = 3/8u2 + 3/4u 6 - 1/8u 3. Using the approach in Carey [7], we introduce

an elementary transformation matrix E relating constrained and unconstrained nodal

values of an element by uC = Eu with Ej = 6ij, if i is a regular node and if i is the

constrained node above, Ei,i-4 = 3/8, Eii-3 = 3/4, -i,i = -1/8 with the rest of the

entries in E zero. Formally the constrained element contributions for K and F can

be comput~ed as K = E kE, F = ETP where k, P are the usual contributions for

the unconstrained biquadratic. Of course, in practice this matrix multiplication is not
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Figure 4, Interface between refined a-ad unrefined elements containing "exposed" nodes 22
and 23 to-be constrained.

carried out but instead the' element contributions K, F aie constructed directly.

(6) Using the s-lution, on the previou- mesh with interpolation at the new grid points

yields an initial vector for the next iteration on the new mesh. Alternatively, a local

projection can be introduced to improve the starting iterate (Carey and Seager [10]).

(7) During pre-front and matrix assembly phases, instead of processing elements sequen-

tially, we follow the pointers to process other children of the quartet, first before pro-

cessing the next element in sequential order. Again, let exanine Figure 4. Element 2

has been refined to produce new elements 13 through 16, Now element 2 is inactive

and after processing element 1, we proc:ss elements 13 through 16 before processing

-lement 3. In this fashion, the front width is perturbed only by asmall increment from

the original mesh front width.
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Figure 5: Geometry of stick-slip problem with hot wall.

( 5 Numerical Results

5.1 Stick Slip Problem

We present here some representative results for coupled viscous flow and heat transfer

problems. The first test problem is a stick-slip problem for axisymmetric viscous flow in a

pipe with no-slip condition on the stick wall (Figure 5). Fluid enters the cylinder as plug flow

with temperature To and encounters the wall at temperature T1. Thus there are singularities

in both the temperature field at the entry wall and in the flow field at the stick-slip point.

Since these singularities have a pronounced effect on the local fluid flow and heat transfer

fields, they provide a suitable mechanism for testing the adaptive refinement algorithm.

Beginning from a uniform coarse grid, the mesh is locally refined through several levels

to produce the grids shown in Figure 6. We see that the grid is refined locally into the

two singular regions with more pronounced refinement occurring at the stick-slip interface.

In these refinement calculations, the refinement test was based on residual error indicators

computed from both the viscous flow and energy transport equations.

14.
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Figure 6: Finite Element mesh, pressure and temperature contours after 2 and 3 refinements.
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________ n=l,0___

graded mesh 2 ref. 3 ref.
error estimate - .2382 .3641

refinements - .2108 .4198
total time 42.056 22.310 35.376

...... 1.121 11.130 1.128
n =0.8 -_

graded mesh 2 ref. 3 ref.

error estimate .2368 .3594
refinements - .1887 .3724
total time 39.417 21.382 28.584
rf_ _ _ 1.092 1.101 1.099

n=0.6

graded mesh 2 ref. 3 ref.
error estimate - 362 .3662
refinements .1886 .4042
total time 38.099 19.914 23.303
-r _/ri -7 1.060 1.067 1.066

Table 1: Break down of cpu time and die-swell :atio for Newtonian jet (n = 1.0) and
power-law jets (n = 0.8 and n = 0.6).

5.2 Die Swell Problem

Similar calculations were performed for the die swell problem with a power law fluid. In

this case, in addition to the singularity at the tip of the stick wall, there is a free surface

which must be determined iteratively as part of the solution algorithm during refinement.

Moreover, as refinement takes place at elements adjacent to the free surface, new nodes are

introduced on the free surface, and this has to be treated appropriately in the algorithm.

The free surface configuration and adapted mesh are show in Figure 7 following three levels

of refinement from an initial uniform grid of 50 elements in a rectangular domain. The final

adaptively-computed swell ratio for a Newtonian fluid ann two power-law fluids as compared

to a graded mesh with 112 elements is shown in Table 1.
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Figure 7: Final mesh and die swell, (a) n =1.0, (b) n =0.6.
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Figure 8: Tandem of heated rectangular'blocks.

5.3 Electronic Cooling

The next example is motivated by electronic cooling applications and considers the con-i
vective heat transfer of a tandem of heated blocks mounted on the wall of an adiabatic

channel (Figure 8). First the flow field of a single block configuration is examined. Figure 9

shows the velocity field for a uniform mesh and following adaptive refinement at Reynolds

number equal to 200. The effect of adaptive refinement can be seen clearly in the suppression

of local oscillations in the flow. The geometry and initial finite element mesh for a two-block

configuration are shown in Figure 10. Figures 11 and 12 give the temperature profiles for

block spacing w = I and w = 21 using adaptive refinement starting from the initial uniform

mesh shown in Figure 10. The effect of choice of fluid, "sheltering" of the second block

by the first and the influence of spacing can be investigated for such applications as micro-

electronic cooling. Finally, the approach has been extended to transient problems where,

in addition to mesh refinement, mesh recombination is carried out. For example, if a sharp

solution gradient is convected across the domain, then elements in front of the advancing

laver will, be refined. and elements behind the layer will be recombined as the solution is

integrated forward in time.
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Figure 9: Velocity vectors for initial and refined grid (Re=200).

Figure 10: Initial -rid for doublc block configuration.
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Figure 11: Temperature contours for w 1 , (a) Re 10, (b) Re =100, (c) Re =200, (d)

scaled plot (-Re =100).
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Figure 12: Temperature contours for w =2t, (a) Re =10, (b) Re 100, (c) Re =200, (d)

scaled, plot (Re =100).
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5.4 Thermocapillary Flow

The variation of surface tension with temperature can be a dominant feature in certain

coupled fluid flow and heat transfer problems. This thermocapillary effect is important

in welding (e.g., see Ostrach [25], Mclay and Carey [24]). In these high Marangoni number

flows (Ma = RePr) surface tension drives the flow at relatively high Reynolds numbers (e.g.,

Re = 0(10')) in the welding applications. Previous numerical studies of thermocapillary flows

for a cavity have given reliable-results at low Re and Ma (Strani et. al. [32]). However,

at higher Ma, the solution is very sensitive to the choice of mesh. This class of problems,

therefore, provides a good test of the ability of adaptive procedures to circumvent these

grid-related issues.

The test problem is a unit square cavity open at the top and containing an incompressible,

viscous fluid. The vertical walls are heated at respective temperature TL and TR and the

bottom is adiabatic. At the free surface the normal heat flux is zero. The differential heating

of the side boundaries produces a thermal gradient. Since the temperature of the fluid at
(the free surface varies, the thermocapillary effect enters wich

Ou aT

giving the surface tension bcundary condition for the momentum equations. Under the

action of the surface tension, a convective flow pattern develops to a steady state solution.

The corners (0,1) and (1,1) are singular points in the flow (as is also the case in the familiar

driven cavity problem). At high Ma and Re, the solution has strong layers adjacent to the

top surface and particularly near the cold corner (here taken to be (1, 1)). We computed the

solution on a coarse uniform grid but the layer structure was not captured.

This problem is also computed by Zebib et. aL. [35] using a finite difference scheme

based on the methods in Patankar [26]. Mesh refinement studies on uniform grids of size

65 x 65 and 80 x 80 indicate the presence of the layers.

In the presen.: calculations, we begin from a uniform rectangular grid of size (20 x 10)

and the scheme adapLively refines the grid during solution. The error indicators correctly

locate the corner and layer regions and refine accordingly. As an example, the mesh after

C 22)
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3 refinement steps is given in Figure 13 for Re = 10000, Pr = 0.1. The corresponding

surface velocity profiles on adaptive meshes for Pr = 0.1 at Re = 1000, 5000 and 10000 are

shown in Figure 14 and the surface temperature profiles in Figure 15. As the solution and

mesh are developed iteratively from coarser to finer grids, the nonlinear solution scheme is

both efficient and robust. The calculation was repeated using a 20 x 20 uniform grid and

produced a less accurate (slightly oscillatory) result than the adaptive grid solution. The

final adaptive grid involved fewer unknowns and the solution was more efficient. The results

shown in Figures 14 and 15 agree closely with those given in Zebib et. al. [35] using a

graded structured 62 x 54 mesh.

I I

Figure 13: Adapted grid at Re = 10000, Pr = 0.1 (Ma = 1000) for surface tension driven
flow (left wall hot, right wall cold).

5.5 Electro-Rheological (ER) Flows

Electro-rheological fluids change their material properties under the action of an electric

field and exhibit shear thinning behavior similar to that of a Bingham Fluid with yield stress

dependent on the E field. As a test problem to illustrate the adaptive refinement results

we consider flow in a channel with fully developed inlet velocity and electrodes on opposite

walls. The domain is 25mm long and the electrodes extend from x = 5mm to z = 15mm

on each wall. The adaptive.grid for for steady flow with an applied E field of 1.36MV/m is

shown in Figure 16. There is strong shear thinning near the walls causing refinement and
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Figure i4: Surface velocity profiles Figure 15: Surface temperature
for Pr = 0.1, Re = 1000, 5000 and profiles for Pr = 0.1, Re = 1000,
10000 computed from their respec- 5000 and 10000 computed on adap-
tive adaptive grids. tive grids.

the central flow is plug like (so the grid remains unrefined here). Further details and results

are given in Wang et. aL [34].

5.6 Refinement and Coarsening: Pulsatile Flow

Mesh coarsening (recombination or unrefinement) can be easily incorporated in the algo-

rithm and data structure given here. Assume we have an active quartet of elements obtained

at some previous refinement step. These elements can be recombined to their father element.

This involves deleting the pointer from the father and releasing storage locations occupied

by the quartet. These storage locations are then available for storage of other new quartets

created elsewhere in the grid by refinement.

Note that at each timestep both refinement and unrefinement may be needed at different

parts-of the grid. In the present algorithm we first exercise unrefinement and then refinement

as before. We then proceed to integrate the solution through the next timestep on this

C- 24
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Figure 16: Mesh for ER problem after 2 refinements.

mesh. here a single unrefinement-refinement adjustment is made in any given timestep. If

the timestep is too large more mesh adjustment within the step may be warranted. In this

case the timestep solution can be repeated until the desired mesh and accuracy is achieved.

Alternatively, a good timestep selection scheme such as those in ODE integrators may be

devised to adjust the step adaptively.

As a test case we have considered periodic flow in a tube. The specified velocity at the

inlet is sinusoidal and during the pulsed cycle, there is substantial backflow near the wall.

- This leads at certain stages of the periodic cycle to a turning flow in the interior. This flow

behavior is reflected in the nature of the grid, which varies from refinement near the wall

to refinement in this interior zone at intermediate times in the cycle. The grid and flow

velocities at t,-* different times in the period are shown in Figure 17.

6 Conclusion

An adaptive refinement and recombiration scheme for steady and transient viscous flow

and transport problems has been deveioped and implemented using biquadratic elements for

the velocity and temperature fields and a bilinear basis for the pressure field. Solution of the

linear Jacobian systems is achieved with a frontal solver, and the data structure is integrated

into the overall solution procedure. Several numerical test cases involving Newtonian and

non-Newtonian flows, including free surfaces and couplea l3ow and heat transfer, have been

considered. These test cases demonstrate the power of the adaptive refinement scheme.
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Abstract

We discuss the use of hierarchical mathematical models in finite element

analysis. The use of such models is demonstrated in the analysis of a simply-

supported plate and the analysis of a folded plate/shell structure. As the

mathematical models are refined, new phenomena are predicted (such as

boundary layers) that need careful interpretation. We conclude that the use

of hierarchical models can be an important ingredient of a reliable engineering

analysis.

J. Computer Methods in Applied Mechanics and Engineering, in press
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1. Introduction

Finite element methods are already used very widely in engineering anal-

ysis and we can expect that this use will still increase significantly over the

years to come. The issues that arise in the proper and reliable modeling by

finite elements are therefore of much concern.

Figure 1 summarizes the process of finite element analysis [1]. The phys-

ical problem would typically be an actual structure or structural component

subjected to certain loads. The idealization of the physical problem to a

mathematical (or mechanical) model involves certain assumptions that to-

gether lead to differential equations governing the mathematical mode!. The

finite element analysis solves this model. Since the finite element solutionC
technique is a numerical procedure, it is necessary to assess the solution accu-

racy. If the accuracy criteria are not met, the numerical ( i.e. finite element)

solution has to be repeated with refined solution parameters ( such as finer

meshes or higher-order elements ) until a sufficient accuracy is reached.

It is clear that the finite element solution will only solve the mathematical

model, and the assumptions in this model will be reflected in the predicted

response. We cannot expect any more information in the prediction of the

physical phenomena than the information contained in the mathematical

model. Hence, the choice of an appropriate mathematical model is crucial

and completely decides the insight into the actual physical problem that we

can obtain by the analysis.
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Let us note here also that, by our analysis, we can of course only obtain

inight into the physical problem considered: we cannot predict the response

of the physical problem exactly, because it is impossible to reproduce even

in the most refined mathematical model all the information that is contained

in the physical problem.

Once a mathematical model has been solved accurately and the results

have been interpreted we may well decide to consider next a refined mathe-

matical model in order to increase our insight into the response of the physical

problem. Furthermore, a change in the physical problem may be necessary

and this in turn will also lead to additional mathematical models and finite

element solutions, see Fig. 1.(
The key step in engineering analysis is therefore the choice of the ap-

propriate mathematical models. These will clearly be selected depending

on what phenomena are to be predicted, and it is most important to select

mathematical models that are reliable and effective in predicting the quanti-

ties sought. To define reliability and effectiveness of a chosen model we think

of a very-comprehensive mathematical model of the physical problem and

measure the response of-our chosen model against the response of that com-

prehensive model. In general, the very-comprehensive mathematical model

will be a fully 3-D description that also includes nonlinear effects. The most

effective mathematical model for the analysis is then surely that one which

yiclds the required response to a sufficient accuracy and at least cost. The

3



chosen mathematical model is reliable if the required response is known to

be predicted within a selected level of accuracy measured on the response of

the very-comprehensive mathematical model. Hence to assess the results ob-

tained by the solution of a chosen mathematical model, it may be necessary

to also solve higher-order mathematical models.

The above considerations lead us to the notion and use of hierarchical

models : a sequence of mathematical models that include increasingly more

complex effects. For example, a beam structure (using engineering terminol-

ogy) may first be analyzed using Bernoulli beam theory, then Timoshenko

beam theory, then 2-D plane stress theory and finally using a fully 3-D con-

tinuum model and in each case nonlinear effects may be included. Clearly,

with this set of hierarchical models the analysis will include ever more com-

plex response effects, but also lead to increasingly more costly solutions. As

is well-known, a fully 3-D analysis is about an order of magnitude more

expensive (in computer and man-time costs ) than a 2-D solution.

In this paper we focus our attention onto some of the new phenomena

that may be represented by increasing the complexity of the mathematical

model. As we shall demonstrate, the results obtained with each model must

be carefully interpreted and can yield some surprises.

Our objective in this paper is to demonstrate the use of hierarchical mod-

els in two examples : the analysis of a simply supported plate and the analysis

of a folded plate/shell structure. Both analysis problems appear to be rather
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simple problems; however, as we shall show, there are some most interesting

phenomena that appear as the mathematical models are refined.

In Section 2 of the paper we consider the analysis of the plate using the

Kirchhoff and Reissner/Mindlin plate theories and in Section 3 we present

the analysis of the folded plate/shell structure using beam, shell and fully

3-D continuum mechanics theories. In each case we focus our attention onto

the mathematical models and the response predicted with each model.

For the low-order mathematical models very accurate finite element solu-

tions can be obtained without much difficulty (which we accept as the exact

solutions of the mathematical models), but as fully 3-D mathematical models

are considered - and hence very detailed effects are sought in the analysis -
(

the solution of the mathematical model would in practice only be obtained

to a certain level of accuracy. This practical limitation necessitates an ad-

ditional consideration; namely that the predicted response be interpreted

using also the level of accuracy attained in the solution of the mathemati-

cal model. However, in particular, this practical limitation also points out

that care must be exercised in the choice of the mathematical models not to

introduce idealizations which result into solution difficulties for phenomena

that are not present in the very-comprehensive mathematical model (which

is our most accurate model of the physical problem).

We conclude our paper in Section 4, where we summarize that the use

of hierarchical (mathematical) models can be an important ingredient of a

(5
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reliable engineering analysis.

2. Analysis of a simply-supported plate using the

Kirchhoff and Reissner/Mindlin plate theories

We consider the analysis of a simply-supported square plate subjected to

a distributed transvt, e load p per unit area. The plate has thickness h and

side-length L, and is shown in Fig. 2.

In Kirchhoff plate theory the following equations govern the response of

the mathematical model of the plate [2]

(. V4w - P inA (1)

D

where w is the transverse displacement of the plate, and D is the flexural

rigidity

Eh 3

12(l 22)

with E and v the Young's modulus and Poisson ratio, respectively.

The boundary conditions for the plate are

M.=0 on r (3)

where Mn is the moment normal to the edge of the plate (corresponding

to a vector along the edge of the plate). In the above equations, A is the

6



mid-surface domain of the plate and r denotes the edges of the plate.

The detailed solution of this mathematical model of the plate is given in

many textbooks (e.g. [2]). The solution directly results into the evaluation

of the transverse displacement w, plate moments and shear forces in the

domain A. However, considering the force and moment conditions at the

plate edges, i.e. at the boundary r, the twisting moment need to be converted

to contribute to the edge transverse shear force. This "post-processing"

procedure yields distributed shear forces along the edges of the plate plus

concentrated forces at the corners.

The above briefly described Kirchhoff plate model is used very widely in

engineering analysis. The model is simple to use in some respects because w

is the only kinematic variable, and difficult to use in other respects. Namely,

modeling difficulties arise when the constraints of the model are too severe

for the physical situation considered. Specifically, these constraints do not

allow for shear deformations and cause corner singularities that can have a

severe and paradoxical effect on the predicted response of the plate [3] (Refer

here also to the Babu~ka paradox in the analysis of a circular plate [4]).

However, considering finite element analysis the major difficulties in the

use of the Kirchhoff plate model pertain to the continuity requirements on

w and its derivatives over the element boundaries [1].

For the above reasons, the use of the Reissner/Mindlin plate theory [5,

6] for the analysis of arbitrary plates has been given much attention during
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the recent years. This mathematical model, when compared to the Kirchhoff

plate model, is hierarchically a higher-order model and in the following we

want to compare some results obtained with the Reissner/Mindlin model to

those of the Kirchhoff model.

Considering the equations governing the response of the simply-supported

plate the Reissner/Mindlin mathematical model can be written as [3]

V1w = P h2  V 2p (4)
D 6k(1 - v) D

V2fl_ = 0 (5)
12k

where n is the in-plane twist

fl = 1ay 0)(6)

In Eqs. (4) to (6), w is the transverse displacement of the mid-surface

of the plate, h is the plate thickness, k is the shear correction factor and

0, and OS are the plate section rotations, about the y- and minus x- axes,

respectively.

We note that the above governing equations allow for transverse shear

deformations, and that as k -- oo ( with h fixed ) the Kirchhoff plate model

equations are recovered, i.e. Eq. (4) becomes Eq.(1) and from Eq. (5)

we obtain fl = 0. However, when using the Reissner/Mindlin plate model in

engineering practice, h is usually small ( i.e. ' < - < L) and k is of order

8



I (typically, k = ) The solution of Eqs. (4) and (5) then corresponds to

an interior solution plus possible boundary layer corrections. The strengths

of the boundary layers depend on the boundary conditions , i.e. whether

simply-supported, clamped, and so on, conditions are modeled [3, 7].

The boundary conditions on w and !l are given in general by the condi-

tions on the kinematic variables w ,0, and O,, and on the static variables, i.e.

the moment and shear forces.

For our case of the simply-supported plate we can choose between two

sets of boundary conditions which are called "soft" and "hard" conditions.

The choice of which of these conditions to use is of course decided by the

actual physical situation to be modeled.

The soft boundary conditions are:

w=O

M. = 0 on r (7)
MIS = 0

and the bard boundary conditions are:

M.. = 0 on r (8)
0. =0 I

where the normal bending moment on the edge is

9 -(2w 92w h2  p
h 2 + h p h- , -?

((v

+ h. 02(DV2w + h 2i - L)2D(l v) 02 (9)

(-- 9



• ),

and the twisting mbment is

a2w h 2 2  h 2  pM,o -D(1 - v)-=- - -os(DV2w+.( )n07193 6k anos 6k( a)

.=_. -=D(1 - v)-j + 0(I - v)fl (10)

Here ( n , s ) denotes the pair of directions normal and tangential to

the edge considered. A detailed analysis of the response of the plate when

assuming the soft and hard boundary conditions is given in ref. [3], see also

f. [7]. In" the pre's"nit paper W1 merely want to show some results obtained

for our simply - supported plate and compare these with the solution obtained

( using Kirchhoff plate theory.

The most interesting results are those calculated for the transverse shear

forces, and we concentrate on these results in this paper. Figure 3 shows the

predicted plate shear forces along the edge of the plate and Figure 4 shows

the shear forces along a line near the centre of tw plate. In Fig. 4 we only

give the results for the plate with the A ratio equal to -L and! -- , because

the results for A = show on the scale used only a difference right at
L 10

the edge. In each case we give the solutions corresponding to the "soft" and

the "hard" boundary conditions. These results show for the solutions of the

Reissner/Mindlin models:

- The soluLions obtained with the soft boundary conditions show bound-

ary layers, and the strengths of these boundary layers increase as h/L

C 10
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decreases.

The solutions obtained with the hard boundary conditions do not show

boundary layers and correspond to the Kirchhoff model solutions except

that the increase in the edge shear forre and the conceutrated forces

at the corners - that are due to the allocation oi the twisting moment

effect in Kirchhoff theory - are not directly predicted. (However, these

forces could be obtained by a "post-processing" of the results for the

twisting moment along the plate edges ).

- Along the plate edges, the solutions for the shear force T,, obtained

with the soft boundary conditions with the Reissner/Mindlin model,

converge to the "corrected" Kirchhoff model sclutions (corrected by

allca,ti:a the twisting moment effect into the transverse shear force).

Based on the above results we can already conclude that the Reissner/

Mindlin nmodei is significantly more powerful in predicting the response of

the plate. However, we also observe that the " correct " boundary conditions

( corresponding to the actual physical situation to be modeled ) must be

chosen. Frequently it is appropriate to use the soft boundary conditions

because the twisting moment M,,, is zero rather than the kinematic variable

0s.

Hierarchically, the Reissner/Mindlin plate model includes the Kirchhoff

model and can be a more reliable model to use, in particular, when shear

( 11
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stresses along the plate edges are to be predicted, or when plates of arbitrary

geometry are analyzed [3]. We finally should mention that, of course, plate

models of higher-order could also be used in the analysis of our plate or a fully

3-D solution could be sought [1, 4, 8]. When using such higher-order models,

additional variables are introduced that can represent additional phenomena

and hence can lead to further insight into the behavior of the actual physical

plate considered.

3. Analysis of a folded plate/shell structure

We next consider the structure shown in Fig. 5. This structure can be

(analyzed using Bernoulli beam theory, Timoshenko beam theory, 2-D plane

stress theory, shell theory and a fully 3-D continuum theory. It is clear that

as we consider a more complex model the assumptions on the kinematic and

static behavior of the mathematical model are different than for the lower-

order models and the appropriate boundary conditions must be identified. As

in the analysis of the plate (see Section 2), the choice of boundary conditions

may affect the solution results significantly.

.Our objective below is to simply state the mathematical models we have

used for the analysis of the structure and give some solution results. The

response predictions demonstrate that, as expected, certain solution param-

eters can only be predicted with a sufficiently high-order model. However,

the results and discussion will also show that as the order of the mathemat-

(hQ. 12
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ical model is increased, the solution effort (by finite element analysis) can

become very large. In such case, it is only practical to solve for the response

of the mathematical model to a certain level of accuracy and include the

accuracy considerations in the interpretation of the results.

Hence in this section we shall also describe briefly the finite element dis-

cretizations used to solve the mathematical models.

3.1 Timoshenko beam model

The simplest mathematical model to represent the folded plate/shell

structure is a beam model based on Bernoulli or Timoshenko beam theory.

(We considered a Timoshenko beam model and solved for the exact response

of the mathematical model by using one cubic-isoparametric beam element

[1] each, for the vertical plate, and for the horizontal plate (with symmetry

conditions at the mid-section of the structure).

3.2 Shell model

The second mathematical model considered for the analysis of the folded

platle/shell structure was based on the Reissner/Mindlin plate theory to

model the plate actions, as briefly summarized in Section 2, and tho usual 2-D

plane stress theory to model the membrane in-plarie actions. The solution to

this mathematical model was obtained using the 16-node displacement-based

shell elements described in detail in refs. [1,9].

13



Figures 6 to 8 show the mathematical model and the finite element mesh

used with the 16-node shell elements. The finite element mesh was deemed

fine enough because the stress jumps at the nodal points were negligibly

small and smooth stress variations were predicted (Of course, an accurate

error indicator would be based on the residual of the differential equations of

equilibrium [10]). Figure 6 also shows the modeling used at the junction of the

horizontal and vertical plates. As described in Section 2, the mathematical

model can here be subjected to hard boundary conditions (0, = 0 = 0)

or soft boundary conditions (O free and 0 free). We obtained our analysis

results, given in section 3.4, using soft boundary conditions.

"3.3 3-D model

The third mathematical model was constructed to capture the three-

dimensional effects at the junction of the plates. Hence we used 3-D con-

tinuum mechanics theory at the junction of the plates and the assumptions

of the shell model discussed in the previous section at a distance from that

junction, see Fig. 9. Of course, a coupling of the 3-D continuum mechanics

assumptions and shell theory assumptions was necessary at two sections of

the plates as shown in Fig. 9. We refer in this paper to this model as the

"3-D model".

*For the solution of the mathematical model, 960 three-dimensional 20-

node elements were used to represent the 3-D part of the mathematical model,

14



and 300 sixteen-node shell elements were used to represent the part math-

ematically modeled by shell theory. Figure 10 shows a section of the finite

element discretization and indicates the element grading used.

Two considerations may be mentioned. Firstly, of course, a 3-D mathe-

matical model could have been used for the complete structure. This would

have required much more solution effort, and since we are only interested in

studying the behavior at the junction of the plates, a fully 3-D model was

not necessary.

Secondly, the finite element solution of the mathematical model was only

sought to a certain level of accuracy. Our objective was to solve the math-

ematical model so as to identify stress variations that occur over at least a

distance of ' th the thickness of the plates. Hence, our finite element dis-T0

cretization was not intended to solve for stress variations that are described in

the mathematical model but that only occur over extremely small distances.

Figure 11 shows a pressure band plot calculated with our finite element

discretization. The bands are quite smooth which indicates that our finite

element mesh is adequate (for the objective stated above) [11].

3.4 Solution results

Our aim in this section is to show some results obtained with the three

different models for the folded plate/shell structure. We want to compare

these results and briefly discuss them with some emphasis on the hierarchical

15



nature of the models. ...

., The transverse displacement at the section of the load application is quite

accurately predicted using either of the three models, see Fig. 12. Of course,

the beam model gives a constant z-displacemen! as a function of x, whereas

the shell and 3-D models predict a larger transverse displacement at the

plate edges than in the centre. Notice that, as expected the 3-D model gives

the smallest transverse displacement and the beam model gives the largest

displacement.

Hence, considering our discussion in Section 1, the beam model displace-

ment results are reliable if the 3-D model is considered the very-comprehensive

model and the selected level of accuracy for the displacement under the load

is ten percent on the response of that model,

Figures 13 and 14 show the predicted longitudinal stresses using the three

models. As probably expected, except for the region near the junction of

the plates, all three models predict closely the same stress distributions.

However, at the junction of Ihe plates we observe the following:

(a) On the top surface and along the centre line ( i.e. along the line OPQ

in Fig. 5), the beam and shell model predictions are close and only the

3-D model can of course represent the zero stress conditions on the free

surfaces, see Fig. 13a.

(b) On the top surface and along the free edge (i.e. along line ABC), the

shell model predicts a longitudinal stress in-between the results of the

16



3-D model and the beam model, see Fig. 13b.

(c) On the bottom surface and along the centre line, only the 3-D model

shows a sudden stress rise (due to the stress singularity), see Fig. 14a.

(d) On the bottom surface and along the free edge, the shell and 3-D models

predict a stress drop, see Fig. 14b.

The results quoted in (a) and (c) are quite expected, whereas the shell

model results referred to in (b) may be unexpected, and the shell and 3-D

model results quoted in (d) may well be a surprise. Namely, we would expect

that the sharp corner causes a sudden stress rise instead of the decrease in the

stress. However, these results are explained in that the finite element solution

of the mathematical model is simply not accurate enough to show the still

possible sudden stress rise (see Section 3.3). Indeed, Babu~ka has solved this

mathematical model accurately (with a huge computational effort) and has

shown that this stress rise still occurs at about a distance of ' times the

thickness of the plate from the corner [4]. While the results of Babu~ka are

most valuable, and point out some very interesting aspects of this particular

mathematical model, a more comprehensive model of the actual physical

problem (including the actual geometry at the corner atid nonlinear effects)

would of course not show such a stress distribution.

( 17



4. Concluding Remarks

Our objective in this paper was to discuss certain key aspects of the finite

element analysis process:

* The cduciai step of a finite element analysis is always the selection of

an appropriate rhathematical model of the physical problem.

e The choice of the mathematical model depends on the effects and quan-

* tities to be predicted.

e The mathematical model is to be effective and reliable for the prediction

(with "effective" and "reliable" defined in the paper).

• The finite element solution of the chosen mathematical model should

be obtained to a level of accuracy measured against the response to be

expected from a very-comprehensive mathematical model.

Good engineering analysis is of course an art and is usually based on a great

deal of experience. However, the considerations given in this paper point

out-i. tlat "w-hichever approach of analysis is followed, the use of hierarchical

mathematical models can be of significant value: with the use of hierarchical

im athematical models the analysis process has structure and leads to results

that can be accepted with confidence. Although not considered in this paper,

the use of hierarchieSl models is most important when there is need for a

nonlinear response prediction [1].
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ABSTRACT

We discuss the general mathematical conditions for solvability, stability and optimal
error bounds of mixed finite element discretizations. Our objective is to present these
conditions with relatively simple arguments. We present the conditions for solvabil-
ity and stability by considering the general coefficient matrix of mixed finite element
discretizations, and then deduce the conditions for optimal error bounds for the dis-
tance between the finite element solutions and the exact solution of the mathematical
problem. To exemplify our presentation we consider the solutions of various example
problems. Finally, we also present a numerical test that is useful to identify numeri-
cally whether, for the solution of the general Stokes flow problera, a given finite element
discretization satisfies the stability and optimal crror bound conditions.
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1. INTRODUCTION

During the recent years it has been recognized to an increasing extent that the use

of mixed finite elements can be of great benefit and may even be necessary to obtain

reliable and accurate solutions in certain fields of engineering analysis. Mixed finite ele-

me3nts are currently used with much success in the solution of incompressible fluid flows,

and continue to provide great promise for the analysis of solids and structures [1,2].

Of course, the largest area of finite element applications is still structural analy-

sis and mixed finite elements are, in principle, much suited for use in the analysis of

almost incompressible media (for example, for the analysis of rubber-like materials,

elasto-plasticity and creep) and the analysis of plates and shells. However, although

many mixed finite elements have been proposed over the last two decades in the re-

search literature, it is apparent that mixed finite elements are hardly used in practical

( structural analysis.

The reason why mixed finite elements are not used abundantly in engineering prac-

tice is that their predictive behavior is much more difficult to assess than for the conven-

tional and commonly used displacement-based elements. Whereas displacement-based

elements, once formulated and shown to work well on certain sets of examples (in-

cluding the patch tests), can be generally employed, mixed finite elements cannot be

recommended for general use unless a deeper analysis and understanding is available.

Namely, considering a certain category of problems, a mixed finite element may work

well in the solution of certain problems but perform very poorly on other problems.

Therefore, a mathematical analysis (even a limited one) for the stability and con-

vergence of a proposed for:m!ation is an important requirement. Such mathematical

analysis should give sufficient insight as to the general applicability of the finite element

1' 2(



under consideration, and is in general no easy task.

Some researchers have proposed some easily applied "counting rules" to assess

whether a mixed finite element can be recommended [3,4]. However, such rules can at

best give some guide lines, and do not give the necessary information to assess whether

an element is stable and accurate.

Considering mixed finite element discretizations, we recognize that they are gov-

erned by a system of equations with a coefficient matrix, C, that we may write as

, (C = [A.1)
i B 0

We quote as a main example the analysis of incompressible fluid flow, the Stokes

problem, when using the velocity-pressure formulation. Other important examples of

interest are the analysis of incompressible solids and the analysis of plates and shells.

, ( In principle, many solutions can be formulated using a mixed or hybrid method that

results into the coefficient matrix (1.1), because this matrix is reached by minimizing

a functional under linear constraints [1].

The general mathematical theory for the solution of problems that are governed by

the coefficient matrix in (1.1) is now quite well established and the detailed applications

of this theory to a number of important problem categories is available. We know

necessary and sufficient conditions for the existence and uniqueness of the solution,

both for the continuous and the discretized problems. We also know necessary and

sufficient conditions on the choice of the discretizations in order to have optimal error

bounds [1,5]. This information is most valuable for the design and analysis of mixed

finite elements because the basic mathematical results are quite generally applicable

(while the detailed -application to problem areas may of course not be straight-forward).

C3



Our objective in. this paper is two-fold. The first aim is to present the general

mathematical results quoted above with relatively simple arguments. For this purpose

we consider the general coefficient matrix of mixed finite element formulations and

deduce the conditions of solvability and stability. In proceeding this way, we refer to

the continuous problem only when necessary (since the treatment of the continuous

problem requires a background in functional analysis) and we concentrate on the dis-

cretized (finite-dimensional) problem. However, wc "teed in pointing out the basic

mathematical conditions on the discretization and in showing that they are necessary

to have stability and optimal error estimates.

Our second aim in this paper is to propose a simple numerical procedure for check-

ing whether the above mathematical conditions are satisfied for a given mixed finite

element formulation. Such a procedure is useful because it may be employed to check

a formulation and its computer program implementation (much like the patch test is

used for incompatible displacement-based finite element formulations). We consider in

this discussion the analysis of incompressible fluid flow and our test is closely related

to "Fortin's trick" to identify whether the mathematical conditions of stability and

optimal error bounds are satisfied.

The paper is organized into the following sections. In Section 2 we recall some basic

properties of square matrix systems and introduce the basic concepts of stability and

optimality. In Section 3 we ther deal with the special case of systems of the form (1.1);

hence here we focus onto the analysis of mixed finite element formulations in detail.

Finally, in Section 4 we discuss two applications and introduce our test for checking

the good quality of a given discretization, using as an example the case of an

incompressible fluid. We then conclude our presentation in Section 5.

4



2. SOME PRELIMINARIES AND THE GENERAL PROBLEM OF

SOLVABILITY AND STABILITY

Let us consider the general case of an N x N matrix M and the associated system

given b E R' find z E JRN such that (2.1)
Mx=b}(2)

The following theorem is a well-known cornerstone in linear algebra.

THEOREM 2.1 Problem (2.1) has a unique solution for every given right-hand

side b if, and only if, the associated homogeneous system Mx = 0 has only the solution

X-=O. 0

In other words, in order to have a solvable problem in (2.1) for every possible b E RN

we need the following condition to hold:

if Mx = 0, then x = 0. (2.2)

Condition (2.2) answers Cie problem of the solvability of (2.1) but not of its stability.

Roughly speaking, we would like that a small change in b determines only a small change

in x. However, in order to measure the magnitude of such change we have to introduce

norms. Assume that we choose a norm 11 JIL for measuring the size of solutions and a

norm 11 hiR for right-hand sides. In principle, we are allowed to choose the same norm

for both, but we shall see that this, in general, is not the most convenient choice. We

also point out explicitly that, in finite dimensional spaces, all norms are equivalent, in

the sense that, for any two norms 11 Is, and 11 11s2 in RN there exist two positive

constants s, and S2 such that



11 v IjIS1 e8 II v IIs2 (2.3)

11V 1S2 - S2 11 V1S1 (2.4)

for every vector v in RN. However, these constants al and 82 will, in general, depend

on the dimension N.

EXAMPLE . This is a very simple example, only used to fix our ideas .[2]. Let

II v I1s,:= max Ivi =11 v IIt (2.5)

11 v IIs':= IVil =11 v 11, (2.6)

then it is easy to see that

max Iv, I5 E IvIl (2.7)
ii

Ivi1 < N max jv, 1 (2.8)
i i

so that s = 1 and s2 = N. Similarly we have for the Euclidean norm

11 V IIE:= (E IV,12)1/2 =11 v iit2, (2.9)
i

that

ii v \/, v 1i ; 11 V II v I1N (2.10)
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We have seen that the choice of one norm or another can change, asymptotically,

the dependence on N of the various constants. We shall come back to this point with

useful guidelines for the most convenient choices. For the moment, we assume that the

choice of 11 JIL and 11 JIR has been performed and define stability in terms of these

norms.

DEFINITION Let M be a non-singular N x N matrix. We define the stability

constant of M with respect to the norms 11 11L and 11 11Rt as the smallest possible

constant 5LR such that

II 6X IlL < SLJ 1 ARII (2.11)
iz IlL -L I b 11R

for all vectors x and 6x in RN with Mx =: b and M6x 6b.

In other words, (2.11) bounds the relative change in x (in the norm L) by means of

(the relative change in the right-hand side b (in the norm R). We point out that such

a constant SLR always exists. However, if we consider a sequence of problems of type

(2.1) with increasing dimension N (corresponding, in general, to a finer and finer finite

element mesh) we might find that the corresponding constants SLR depend on N and

become infinitely large when N -* +oo. Thus we might say that a sequence of problems

of the type (2.1) is stable with respect to the norms 1J]IL and 11 1R if the stability

constant SLR is uniformly bounded.

We would like now to present stability from a slightly different point of view. For

this, let us introduce the matrix norms

11 M JILR= sup My R (2.12)

and
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11 M-'z JIL
11 M- 1 IIRL II Sz hUP (2.13)11I z 1IR

From (2.13) for z = bb (so that M - bx) we easily obtain

11 M-' IRL - 11 6b hL (2.14)

while (2.12), for y = x (and My = b) gives

hIM IILR lilt (2.15)II~ ~1 X JI,> IL' H

From (2.14) and (2.15) we then have

ii bX UIL M -1 II b hJR (2.16)

11 X IlL -11M IILR II IIL 1 b hJR

from which

SLR =11 M IILR 11 M-' IIRL (2.17)

REMARK 2.1 Noting that, for every x, one has x = M- 1Mx we obtain

11 X JIL : 11 M- 1 IIRL 11 M lI II 1 X iL (2.18)

which easily implies

SLR =11 M-' IIRL II M IILR > 1. (2.19)

REMARK 2.2 If we choose 1I IlL = II IIR = II liE (Euclidean norm), and if M is

symmetric and positive definite, then

11 M IILR= A.,, ; II M-1 IILR = 1/Ami (2.20)

(8



where A... and Amn are the maximum and (respectively) minimum eigenvalues of M.

Hence, for the case of M being symmetric and positive definite, we have that

SLR = SEE = (2.21)

coincides with the usual condition number. Note however, that a different choice of

norms will (obviously) produce different stability constants. For instance, by taking

M ( 1 ; 11L = Ili e; 11 IJR II 11 (2.22)

(see (2.5) and (2.6) for the definition of the norms 11 It. and 11 Ile) we have

Amax -3 += V5 Amin "- ; 11 M JILR- 5; 11 M -1 IRL= 1. (2.23)
2 ,mn 2

so that sEE = - (= condition number) while SLR = 5. We shall see in the following

that, for practical problems, we have, in a natural way, choices for the norms 11 IlL

and 11 IIR for which SLR will be uniformly bounded while SEE is not. 0

From (2.17) we see that a sequence of problems will be stable with respect to the

norms 11 jIL and 11 hR if both 11 M IILR and 11 M - 1 IIRL are uniformly bounded. In

the applications it is very easy to find norms 11IL such that

y'Mz < kM 11 Y IlL II X I1L V,y (2.24)

with kM uniformly bounded from above and from below. From (2.24) we have a natural

choice for 1I 11R that produces a uniform bound for 11 M IILR. Indeed, if we define the

dual norm of 11 IlL by



y t z
11 Z l:= SUP JI (2.25)

we have the following proposition.

PROPOSITION 2.1. Let M be an N x N matrix, let 11 l1L be a norm in RN and let

kM be the smallest possible constant for which (2.24) holds true, that is

kM = sup YM (2.26)
z, I 1Y IL 11 X IFL

If we choose I fIR - II II, (dual norm of II liL as defined in (2.25)) then

I M IILR= kM. (2.27)

PROOF. We have

1 j1 M IILR " (use (2.12)) = sup 11 MZ R _

= I•ZII M ID
(use II 11R=11 IIDL) = sup =. 11 X • II,. (2.28)[ 1 liz I
(use (2.25)) = sup 1 sup YtMX

ytMz V 11YIfl
= sup X = (use (2.26)) = kM2 ,1 II • lt I I

If we assume now that we are given a sequence of problems such that

y'Mx _ kM II Y lIL II X IL VX,y

with kM uniformly bounded from above and from below, and if we choose 11 IIR JIIn

then ,,e sequence of problems will be stable with respect to the norms H r i and ji IIR

10
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if and only if 11 M-1 i[L is uniformly bounded. In the following proposition we express
In

I M-' JIRL *%terms of the norm 11 JIL alone.

PROPOSITION 2.2. Let M be a non-singular N x N matrix. Let 11 IlL be a norm

in RN and let I HR be the dual norm of 11 JIL as defined in (2.25). Then

(II M- IRL) - = inf sup yMZ (2.29)
2 i 1Y IL 1 -I '

PROOF. We have

(I M- 1 lI)-1  -  (use (2.13) = (sup "1 M-'z IL )- inf 1 Z fIR

15 Zf IR 11 MfA1z JIL
11 MX _I

= (set z = Mx) = inf "" if -I

(use 1f 11R=11 IDL) = inf 11 Mx IIDL (2.30)

=(use (2.25jinf {~XLsup ~M

- inf sup YtMX
SV I IlL 11 Y ilL

0

The following proposition summarizes Propositions 2.1 and 2.2.

PROPOSITION 2.3. Let M be an N x N non-singular matrix, let 11 jIL be a norm

in RN and let 11 hJR be its dual norm as defined in (2.25). Setting

ytMz
km = sup iL zI (2.31)Zl 11 YI IL 11 X IFL

"tM = infsup. 1 /Mz (2.32)

the stability constant SLR of M is given by

t_ 1



SLR = kM/rfM. (2.33)

The proof is obvious from (2.17), (2.27), (2.29), (2.31) and (2.33).

REMARK 2.3 If we assume to be dealing with a sequence of problems where

y*Mz < k Ii Y I, II X IlL VX,y (2.34)

with k uniformly bounded from above, then kM < k and in order to have a uniform

bound for SLR we only need -yM to be uniformly bounded from below, that is, we need

a constant -y > 0 such that

inf sup >!M '> 0 (2.35)
z IIV 1 IL1 II Y IIL

for every problem of the sequence.

REMARK 2.4 We remember that the solvability of (2.1) was expressed in (2.2) by

MX = 0 =. x = 0. (2.36)

Under the assumption (2.34) we have now that the stability can be expressed by (2.35)

which, in its turn, can be written as

3-y > 0 such that 11 MX iIDL ! Y II X IlL V. (2.37)

Indeed (2.35) can be written as

3- > 0 such that sup FY-1L 1 lk VX* (2,38)

which becomes (2.37) by using the definition of the dual norm (2.25). o

( 12



We end this section by analyzing 'the connection of the above results with the use

of Galerkin methods for the discretization of variational problems. Let us consider

a general linear elasticity problem characterized by a given Hilbert space W and a

bilinear form m(b, b) defined on W x W. Given a linear functional P(Ok) from W to R

we want to approximate the solution of the continuous problem

{ find 0 E W such that

m(, ) = PO) V E (2.39)

by means of the sequence of finite dimensional problems

find Oh E Wh such that
m(OhOh) = f(0h) Vh E W(2.40)

where Wh is a sequence of finite dimensional subspaces of Wh. Let us note that (2.40)

is a very general mixed formulation. However, it may help the intuition of the reader

Cto think of a displacement-based finite element discretization, which is the easiest case.

By choosing a basis O((1),... , q(N) in Wh we can associate with every vector C E RN

the element

jO(') E Wh (2.41)
i

(in the usual way). Every problem (2.40) has now the form (2.1) with

Mij := m( 4(j), 0()); bi :-( (i)) (2.42)

If the linear form m(o, 0) satisfies

m(0,0b) _ km 110 11w Il V) 1w V,b E W (2.43)

13



then (2.34) will easily hold with k = km (with k,, independent of h) if we choose

11 e IIL:=II F, 60'c,11W (2.44)

as a norm in IRN. The stability condition (2.35) can now be written in terms of the

bilinear form m(o, 0) and of the space Wh as

inf sup T(0h,) > -Y > 0 (2.45)

0*EWA OAEWh , 1Oh 11W II Oh itW

with - independent of h.

We point out that (2.45) on one hand implies (as we have seen) the solvability of

every discre-te problem (2.40). On the other hand, if (2.45) holds with 'I independent

of h, then one can deduce optimal error bounds for the distance between the solution q

of (2.39) and the solution OAp, of (2.40). Incidentally, we point out that (2.45), together

with

lim inf 11 P- Oh iTw 0 V¢ E W (2.49)
h-0O 0,P(.EWh

implies that (2.39) has a unique solution. We shall not report here the proof of this

fact (which has basically little bearing upon our discussion), and shall instead report

the proof of the optimal error bounds.

THEOREM 2.2 (Babugka [6]).

Assume that the bilinear form m(0,0¢) and the sequence of subspaces Wh c W

satisfy (2.43), (2.45) and (2.49). Let ' be the solution of (2.39) and 'h the solution of

(2.40). Then

II '- OPh Ilw- (1 + km/ry) inf II ' - 'Ph Iw . (2.50)
1hWh

[ 14
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PROOF. .u' every lb,, E Wk we have

IIt/h - 0h IIW < (use (2.45)) h, x)

Su'D 11I Xh 11W
- (add and subtract 0) -

= sup {m(, -,X)-m(O - Oh,Xh)}/ 11 Xh lw

- (use (2.39) and (2 .40'j1p1 m(4h - 0, Xh) < (2.51)
X&~e II Xh I1w

(s "_. °'j2"4 sP km 11 Ikh - 0 11w II Xh 11w
< (use (h - x 11w

= km II b-h€Iw.

From (2.51) we have, using the triangle inequality:

11 Oh -€ 0~ _W I5 11Oh- CAh IJW + 11 Oh -0 [Iw<
(k,/'y)II Oh - 0 11w + II Ph -4 nw= (2.52)

= (1 + k.1-1) II Oh - ' IIw

and (2.50) follows since (2.52) holds for every 'Ph E Wh.

15



3. SOLVABILITY AND STABILITY OF MIXED FINITE ELEMENT

FORMULATIONS

We consider now a special case of (2.1). Namely we assume that the matrix M has

the typical form arrived at when using a mixed finite element formulation,

M= B(3.1)

where A is a square NA x NA matrix and B a rectangular NB x NA matrix with

(obviously) NA+NB = N. Accordingly we split the unknown x = (u,p) with u E RNA

and p E JNB and the right-hand side b = (f,g) with f E JRNA,g E NB. With this

notation, the linear system under examination can be written as

Au + B'p = f
Bu g(3.2)

The analysis of the solvability, stability and optimality of mixed formulations has been

performed in [5]. However, we shall follow here the more elegant presentation of Arnold

[7]. In any case, the following space is of crucial importance. We set

K = {v E RNA, such that By = 0} (3.3)

(in other words K = Ker(B)). If NK is the dimension of K we can split IRNA as

JRNA = T ED K (3.4)

where T is the orthogonal of K in JRNA. As a consequence of (3.4) every v E IRNA can

be split, in a unique way, as a sum

16



V = VT + VK with VT E T, vK E K, and vtVK = 0. (3.5)

If NT is the dimension of T, we will obviously have NT + NK = NA.

Let us now assume that the system of equations with the matrix M has been

established in a suitable basis so that we can write the matrix A as

A=( ATT ATK (3.6)
A AKT AKK )"

The notation (3.6) implies that the choice of the basis and the ordering of the unknowns

in IRNA has been done in such a way that every VT E T has only the first NT components

which are, a priori, different from zero, while every vk E K has only the last NK

components (a prior) different from zero. With a (quite natural) abuse of notation we

shall therefore, when convenient, treat VT as an element of IRNT (discarding the last

( NK components which are identically zero). Similarly we shall treat, when convenient,

vK as an element of RNK (discarding the first NT components) so that, for v = VT + VK

we can write:

Av = (ATTVT + ATKVK) + (AKTVT + AKKVK) (3.7)

In (3.7) the first term of the right-hand side belongs to T and the second one belongs

to K. Similarly, the matrix B will have the form

B = (BT BK) (3.8)

with

By = BTVT + BKVK, (3.9)

C17



f_7
(. always with the notation (3.5). Note now that from (3.3) and the definition of T we

will have

BVK = BKVK = 0 VVK E K (3.10)

and

BVT = BTVT = 0 iff VT = 0, (3.11)

so that (3.9) can actually be written as

Bv = BTVT (3.12)

We also have

( B tq=B qT, Vq E JJN. (3.13)

With a similar splitting for the right-hand side f = fT + fK the original system (3.2)

can now be written as

ATTUT + ATKUK + B'p T I
AKTUT + AKKUK fK (3.14)BTUT 

g

The conditions for the solvability of (3.14) (and hence of (3.2)) are now clear: we

need that (i) the equation BTUT = g is solvable for every g E RNB, (ii) the equation

AKKUK = fK is solvable for every fK E K and (iii) the equation BT.p = fT is solvable

for every fT in T. Condition (i) is equivalent to have that

B7T, as a mapping : T --*1RNB, is invertible. (3.15)

On the other hand, condition (ii) is equivalent to

( 18
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AKK, as a mapping: K -- K, is invertible. (3.16)

Note now that, from the definition of BT and in particular from (3.11) we have that

BT is always injective, so that (3.15) implies NT = NB. Now we conclude that the

nmatrix BT, as a mapping: T -+ IRN is a non-singular square matrix, and therefore its

transposed matrix BT' is also non-singular and (iii) is automatically satisfied.

We want now to express (3.15) and (3.16) in terms of the matrices A and B, and

of the kernel K (defined in (3.3)). Condition (3.15) is clearly equivalent to

Btp = 0 =* p = 0, (3.17)

while (3.16) can be written as

( (uEK and v'Au=0 Vv E K) =>- u = 0. (3.18) )

Conditions (3.17) and (3.18) are necessary and sufficient for the solvability of (3.2) for

every right-hand side f E RNA and g E RNE. We can summarize the above results in

the following proposition.

PROPOSITION 3.1 Let A be an NA x NA square matrix and let B be an NB x NA

matrix, and let K (the kernel of B) be defined as in (3.3). The linear system (3.2) is

uniquely solvable for every f E iRNA and for every g E JRNB if and only if conditions

(3.17) and (3.18) are satisfied. 0

Note that, in particular, condition (3.17) implies

NA=NK+NT=NK+NB>NB (3.19)

( 19



which is (obviously) a necessary condition for the solvability of (3.2). However, "we

now recognize that the use of (3.19) as a test for solvability (or, worse, for stability)

is too simplistic and hence misleading. Note also that, if A is symmetric and positive

semi:-definite, then (3.18) can be expressed by the easier form

vtAv > 0 Vv E K. (3.20)

We address now the problem of stability of (3.2). In agreement with the approach

of the previous section we might decide now from the very beginning to use dual norms

for measuring the right-hand sides. Hence we assume that we have chosen a norm

I 11v in RNA and a norm 11 jjQ in lNB and define the stability constant S as the

smallest constant such that

11 6u iv + 11 6P IIQ 11 8f IIDV + 11 g IIDQ (3.21)

() IIVuiv+11pIIQ - DfDv+jg119IDQ
for all u, p, 6u, 6p, and f, g, 6f, 6g with Au + Btp = f; Bu = g; Atu + Bt1p = 5f and

B6u = 6g. From the previous section we have again S > 1.

REMARK 3.1 Definition (3.21) coincides with (2.11) if we take

1 (u,p) IlL = II U Jjv + II P IIQ (3.22)

II (f,g) IIR = II f IIDV + 1 g IIDQ . (3.23)

We notice that in this case the norm II fIR is not the dual norm of 11 IlL. Actually

we have

II (f,g) IIDL= max(J f IIDV, 11 g lIDQ ). (3.24)

( 20



However one can easily check that

I1 (f,g) IDL - I (f,g) 1R :- 2 11 (f,g) IIDL (3.25)

so th'at the conditions for the uniform stability are still as discussed in the previous

section. 0

Our aim is now to give conditions on a sequence of problems (3.2) in order to
have S uniformly bounded. We might of course use, for instance, (2.34) and (2.35)

as in the previous section (since we are dealing here with a particular case of the

previous discussion). However, we prefer to have separate conditions on the (sequence

of) matrices A and B, as we did for the solvability problem. This, actually, is much

more convenient in actual applications.

We assume, for the sake of simplicity, that there exist two constants kA and kB such

( jthat

vAu < kA II V lIv II U Iv VV, U (3.26)

vtBtq < kB 11 iv II q I1Q Vv, q (3.27)

with kA and kB uniformly bounded from above and from below. In actual applications,

(3.26) and (3.27), are easily fulfilled with the "natural choice" for the norms II hIv and

11 J[Q. Notice that (3.26) and (3.27) immediately imply that A has norm < kA from

II iv into 11 jjiV (as in the previous section, Proposition 2.1). Similarly BT has norm

< kE from II liv into 11 IDQ . On the other hand (3.26) and (3.27) also imply

11 M IILR <  kA + 2kB (3.28)
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( for M given in (3.1) and the norms 11 JIL and 11 IR as in (3.22), (3.23). Hence, in

view of (2.17) we have only to control 11 M-' JRL . Assuming that M is invertible (and

hence, by (3.14) AKK and BT are also invertible) we have easily from (3.14) that

" UT lIV < 1 115I liii g IIDQ (3.29)

11 UK liv 11A 11 (11 fK IDY + 11 AKTUT IDV)(3.30)

<5 11 A-' 11 (11 fK lliV +kA II U " lIV)

i p IIQ < 11 (B') - ' 11 (11 fT IlnV + 11 ATTUT liDV + 11 ATKUK IIDV) (T (3.31)
-< II (By)-' 11 (11 fT JiD +kA(l UT Iv + 1 U1 IUK '))

where

1 BT1 11= sup I (3.32)
9 IIg IIDQ

11 A-' 11= sup IA liv (3.33)SEK 11 II DV

and

11 (B) - l 11= sup (B4.)-1fT I, (3.34)
IT II fT lIDV

Substituting (3.29) into (3.30) and then (3.29) and (3.30) into (3.31) one obtains

1I (U,p) 11 C(II Bj5 11, 11 A- 11,11 (B) - 11, ,kA) II (f,g) II (3.35)

Since, as it is easy to check,
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[ (

11 Bj1 11=11 (BT) -1 II (3.36)

it follows from (3.35) tiat, in order to have a uniform bound for S (in (3.21)), we only

need that 11 Bj 1 II (or 11 (BI,) - 1 ii) and 1 A-' 1 are uniformly bounded from above. In

order to express this condition in terms of the matrices A, B (and of the kernel K as

defined in (3.3)) we shall rather write that 11 (B*,) - 11-1 and 1 A- 1 ' are uniformly

bounded from below by some positive constant. Actually we have

(su (B')- 1fT IIQ)~
11 (B') - 1 = (use (3.35)) = (sup TI f II-v

= inf II fT IIDV =

- (use fT = B ,q) = inf B4q IIvT q 11 q IIQ(3.37)
= (use (3.12)) = inf- Bq IDv

q II Q Q t q= (use (2.25)) = inf sup q
q V 11 qIIQ 11iv 1k'

= inf sup qBv
q V'Fj v 11v 11 qi II-

and

II A-' I- = (use (3.33)) = (suk I A7.v IIv)-, =

= inf I IIjv A
= (use v = AKKu, inf II A,,-v,(3I38)

UEK 11 U I11 (3.38)
= (use (2.25)) = ink sup z=A U

ZEK 1IUI IV 11 z 11V
z'AU

-- = k su p.
- (use (3.7))1in U 11 1 Iz IIv

23
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From (3.37)), (3.38) and the previous discussion we have now the following proposition.

PROPOSITION 3.2. Assume that we are given a sequence of problems of type (3.2).

Assume that the matrices A and B satisfy (3.26) and (3.27) witb kA and kB uniformly

bounded. The stability constant S in (3.21) will then be unift ,nded if and only

if there exist two positive constants a and / such that

infs V'Au > a > 0 (3.39)
inf I liv II lv

and

inf sup qBv > > 0. (3.40)

q v 1 v 1 1 q lII -

for every problem of the sequence.

REMARK 3.2 If every matrix A is symmetric and positive semi-definite, then (3.39)

takes the simpler form(

3a > 0 such that vAv > a al V11 Vv E K (3.41)

with K (as in (3.39)) always given by (3.3). In some applications (typically in the

solution of Stokes fluid flow problems) the matrices A will be positive definite and

satisfy (3.41) for all v in RNA. This led some authors to consider (3.40) as the condition

for stability and convergence of mixed methods, which obviously is not the case. For

instance, in the analysis of the mixed (a, u) formulation of elasticity problems in the

nearly incompressible case, condition (3.39) is more delicate to enforce than (3.40).

On the same erroneous trend, some authors seem incapable of distinguishing between

(2.35) (which is a condition on the whole matrix M) and (3.40) (which is a condition

on the rectangular submatrix B of a special case of the matrix M, namely (3.1)) -

( 24
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Let us consider now, as we did in the previous section, an abstract continuous

problem and its Galerkin approximation. Assume that we are given two Hilbert spaces

V and Q and two bilinear forms a(u,v) (on V x V) and b(v,p) (on V x Q). We assume

from" the beginning that the two forms are continuous in the sense that there exist two

positive constants k, and kb such that

a(u, v) < k. 11 u i vII V Iv Vu,v E V (3.42)

and

b(v,) kb 11lv I1P IIQ VvEV, pEQ. (3.43)

We can also introduce a kernel

K = {v E V such that b(v,q) 0 VqE Q} (3.44)

which is the continuous version of the kernel K defined by (3.3). For the sake of

simplicity we shall also assume that a(u, v) is symmetric and positive semi-definite,

that is

a(u, v) = a(v,u ) Vu,v E V (3.45)

a(v, v) > 0 Vv E V. (3.46)

Finally, in analogy with (3.40) and (3.41) we make the following assumptions:

:1 > 0 such that a(v, v) > V VvEK (3.47)
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(I

3/3>0 such that in b(v,q) > . (3.48)li v V1 q 1kQ
We have the following existence and uniqueness theorem.

THEOREM 3.1 [5] Assume (3.42) - (3.48). For every f E V' and for every g E Q',

where V' and Q' are the dual spaces of V and Q, respectively, there exists a unique

pair (u, p) in V x Q such that

a(u,v)+b(v,p) = f(v) VvEV (3.49)
b(u,q) = g(q) VqEQ

Assume now that we are given a sequence (Vh, Qh) of finite dimensional subspaces of

V and Q respectively, and consider the finite dimensional approximations of (3.49):

(" (find uh E Vh and Ph E Qh such that
a(uh, vh) +b(vh,ph) = f(vh) Vvh E Vh (3.50)
b(uh,qh) = g(qh) Vqh E Qh.

It will also be convenient to introduce the finite dimensional kernels

Kh = {vh E Vh, such that b(v,, qh) = 0 V qh E Ql,}. (3.51)

It is clear that, by choosing bases in Vh and Qh, (3.50) can be written in the form

(3.2). As a consequence, the solvability conditions for (3.50) will be:

a(vh , Vh) > 0 VVh E Kh (3.52)

{b(vh, qh) = 0 E Vh}=- qh -0 (3.53)
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, C'
as it can easily be deduced from (3.20) and (3.17). The uniform stability conditions

become now

3 a* > 0 such that a(vh, vh) a* II V 1 VV1 E K1 (3.54)

3,8* >0 such that inf& u b(vhq) > (3.55)

,JE V1,E h fly 11 qh 1kQ
with a' and #* independent of h. It is clear that (3.54) and (3.55) are just a different

way of writing (3.41) and (3.40). It is also clear that (3.54) implies (3.52), and (3.55)

implies (3.53), so that stability implies solvability.

As far as error estimates are concerned we have the following theorem.

THEOREM 3.2 [5] Assume that the sequence of subspaces (Vh, Qh) satisfies (3.54)

and (3.55). Then problem (3.50) has a unique solution (uh, ph) for every h > 0. More-

(over there exists a ccnstant c > 0, depending only on k. (3.42), kb (3.43), a' (3.54) and

/3' (3.55) such that:

11 u - u 11v + 11 p - Ph IIQ <  C{,,in II U - V q I + inf 11 p - qh JIQ} (3.56)

where (u,p) is the solution of (3.49).

PROOF. We shall only sketch the proof, which is based on a classical "stability-

consistency" argument. Let u[ and ph be the best approximation one can have for u

and p (respectively) in the subspaces, that is

II u - u_ 1lv= in ' 11 U - V1, IV (3.57)
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I-.

I p - p I1Q= inf 11 p - qh IIQ (3.58)
qhEQh

Let now

f(vh) := a(u,vh) + b(vh,ph) (3.59)

g(qh) := b~u*, qh) (3.60)

and notice that

(f - )(vh) = a(u - , v) + b(vh,p- ph), (3.61)

r(g - j) (qh) = b(u - u', qh). (3.62)

Notice finally that (Uh - Uh, ph - pI) solves a problem of type (S.50) with right-hand

side given by (f - f,g - j). The stability of (3.50) implies that

IUh-,Uh,,;v + 1,,Ph -Ph Cl(If-f llDv+llg- IDQ)= (3.63)
(f -f)(vh) ( - §)(qh)

C s -1 qh II qh IIk

C2{!! U-uhIJv +11p-pI IQ}

withi C1 and C 2 depending only on a*, P*, k., kh. From (3.62) and the triangle inequality

we have Pow

I ,U -,, 1Iv + II P - Ph IQ _ (1 + C2) (11 Ui - l* vIV + II P -Ph* IIQ) (3.64)
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and (3.64) with (3.56) and (3.57) gives (3.55).

We end this section with some observations regarding penalty methods applied to

systems of the form (3.2). For the sake of simplicity, assume that NA - 3, NB = 2

and that M has the form

au 0 0 fl 0

0 a2 0 0 #2
M= 0 0 a3 0 0 (3.65)

,61 0 0 0 0
0 #2 0 0 0}

For a more realistic situation we have to think of (3.65) as a block partitioning of M.

It is clear that the system (3.2) splits now into

iui (i = 1,2) (3.66)fliui -" gi

and

a3 U3 = (3.67)

If one of the f8i vanishes then (3.17) is violated and M is singular. If instead 8i $ 0 (i = 1, 2)

then

K = {O,O, u3 ), U3 E R} (3.68)

and a3 -00 satisfies (3.18). Assuming that all the a, (i = 1,2,3) are bounded away

from zero (for the sake of simplicity) we have only to consider systems of type (3.66)

that we consider through their typical representative:

{au+1p =f{ =g f(3.69)flu = g
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f'.

A penalty approach to (3.69) consists in finding, for e > 0 (and "small") the solution

of

au, + f = f (3.70)

which is given by

Ef + og P f - ag (3.71)

It is clear that (for a 0 0) the solution (3.70) always exists, even for/3 - 0. However,

for/3 = 0, p, -- oo as c -- 0 when g # 0. On the ocher hand, in some applications (as,

for instance, incompressibility conditions with zero Dirichlet boundary conditions), we

have g = 0, and the situation improves. For g = 0 (3.71) becomes

( f _ ff
,. = Pa ; p,- f32 (3.72)ca+ + +2

For/3 - 0 (3.72) gives

f
U= -; p'=0 (3.73)

a

which is a nice result. Actually a closer look at (3.69) for/3 g 0 shows a singular

but compatible system with solution u - f/a, p = undetermined. Clearly (3.73) gives

the solution of minimum norm.

Let us now consider the case g = 0 and /3 very small. The system (3.69) will have

a very large stability constant. However, if we look only at the u, component of (3.72)

we have

u, --+ 0 for e -- 0 (3 fixed) (3.74)
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and u, is uniformly bounded (in c) as e goes to zero. On the other handff

u, -- for /3-40 (E fixed) (3.75)
a

which shows that we have difficulties to interpret the results even if u, is computed as

a number of reasonable size. A look at the p, part of the solution shows that

p, -f for c - 0 (3 fixed) (3.76)

If 3 is very small p, will be very large and this indicates that a change in discretization

may bi required.

In a practical analysis, there will generally be only a limited number of the #i's that

are small. Hence, only the corresponding pi components will be large, and this can

explain the appearance of the so-called checker-board modes that appear, even when

Cu, behaves nicely. Note also that, when solving with the penalty approach (for g = 0)

a small /31 can be more dangerous than a f3i = 0, as shown by (3.73) compared with

(3.74) and (3.76).
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4. EXAMPLES OF APPLICATIONS

Ta this section we present two examples that demonstrate the theory we have pre-

sented in the earlier part of the paper, and we also present a numerical procedure to

test whether the inf-sup condition is satisfied for a finite element formulation to solve

Stokes fluid flow problems.

4.1 Mixed Methods for Linear Second-Order Elliptic Problems

We start here with a very simple example to show the importance of the condition

(3.54) (Kh-ellipticity). Consider the mixed formulation of the model problem

"--1 - in]-1,1[ 
(4.1)0(-1) = 0(i) = 0

The solution is clearly

(X) = 4.2)

Introducing the additional variable

or '(4.3)

the mixed formulation of (4.1) reads now

ar dz+[ 1r'dz=0 Vr (4.4)

1/. d(4.5)

which is clearly of the form (3.49) with
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V = {fr E L2(]- 1,1[), r' E L2(]- 1,1[}, II 11,--110 I+ r' II1' (4.6)

Q = L2(] 1,1[), II 1111 0 l1 (4.7)

a(Co,, r) = o r dz; b(r,-,) = j 'dx (4.8)

where in (4.6) and (4.7) we u~sed

11 V n:= (4.) ad. (4.9)

Note how the form of a and b in (4.8) easily determines the norms (4.6) and (4.7)

which are needed to have (3.42) and (3.43).

( Let us check, as an exercise, that our problem satisfies (3.47) and (3.48). We have

first to find what is K, as defined by (3.44). We have

{] #r'dx = 0 V 0} 4=> r' 0 4=* r = constant (4.10)

so that K contains only the constant functi. . For reK we have

ak'rr) =11 Ir I=iI r I (since r' =0) (4.11)

and therefore-(3.47) holds with a = 1.

Let us now curn to (3.48). For every E L2 (]- 1,1[) we can set

f(x) f / (t) dt (4.12)

We then obviously have
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.°.

) L- ,/_ =12 ~(4.13)

II f' 112=11 4 112 (4.14)

Furthermore

0I-I 0II ' II . (4.15)

and hence we have

b(r, €)>b(f, €)I f;1Usup II" l- 11 T JII, (1 112 ~o + 11 y, 112)/2 -

11 112
(-> (use (4.14) and (4.15)) > 1 (4.16)

(1 12+ 11 112~)1/2 = 2 114)110 46

Since (4.16) holds for every 4 we obtain (3.48) with =

Let us now consider the discretization of (4.4), (4.5). We take a decomposition of

- 1, 1[ into N equal intervals and set

!0
Qh = {piecewise constants (= £o with the notation of [11)} (4.17)

It would now be reasonable to take

V, = {piecewise linear continuous functions ( .C)} (4.18)

In this case it is easy to check that Kh is also reduced to the constant functions,

and therefore (3.54) holds with a* = 1 (always by (4.11)). On the other hand the

construction (4.12) still works, since E CO implies f E £[. Hence (3.55) also holds,
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with ' = 1/Vr, and the assumptions of Theorem 3.2 are fulfilled. In our particular

case (g 1) it is also easy to prove that, for every decomposition, we have

oh(x) =z in -1,1[ (4.19)

which is the exact solution.

Assume now, for our discussion, that we take a larger Vh, namely:

V = {piecewise quadratic continuous functions (= .)}. (4.20)

Setting

B 2 = {piecewise quadratic functions vanishing at the subdivision nodes) (4.21)

we easily have

(
Vh E=D1 B2 . (4.22)

We can now make an observation which is of general validity: the choice of a larger

Vh (with the same Qh) makes the inf-sup condition (3.55) easier to satisfy and the

Kh-ellipticity condition (3.54) more difficult to satisfy (unless, obviously, the bilinear

form a is V-elliptic: in such a case (3.54) is always satisfied for all choices of Vh and

Qh). In our case

Kh = {TE 2,C such that L r'dx = 0 VO E £° } = K E B2  (4.23)

where K is the space of global constants as in (4.10). Let now, for every subinterval

Ik(k = 1, ... N); bk be the second order polynomial vanishing at the endpoints of Ik and

normalized in such a way that
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fIk b'(x)dx 1 (4.24)

A simple computation shows that

11 b' j1= 10/h (4.25)

so that

a(bk,bk) =1 bk jo = 1 (4.26)

and

11 bk I2=ll bk 11' + 11 b' 112= 1 + 10/h (4.27)

and condition (3.54) can only hold for

or = h/(h + 10) (4.28)

which is not bounded uniformly from below. On the other hand, it is obvious that for

every 0 E £' we have

sup b(r, ) > sup > 1 I (4.29)
sup'C 11 sup --- > -S 1 11rII

2E4J i - I li V
and (3.55), as predicted, is easier satisfied with a larger Vh. We are therefore facing

a case where the inf-sup condition (3.55) is easily satisfied, but the Kh-ellipticity

condition (3.54) holds only with a* - h. Notice that (3.52) is still satisfied so that

the discrete problem wiil -be uniquely solvable. Notice as well that we started with an

effective discretization (Vh -£, Qh o), that gave the exact value for oh, and that
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we enlarged V (which, as we have seen, does not affect the ability to satisfy the inf-sup

condition). The key question must now of course be: "how is our solution accuracy

affected by the enlargement by V?"

The solution of the discrete problem: find 0 h E £I and Oh E £0 such that

ohrdx + Otr'dW = 0 VW E Z' (4.30)

L ad -1Odx =o0 V WE £CO (4.31)

can again be computed by hand. Namely, from (4.31) we obtain

N
oh(X) = X + C +Z ckbk(Z)

k=1

with c and ck to be determined. Now c = 0 for symmetry reasons (the solution is

unique) and choosing r = bk(X) in (4.30) yields

Ck = - fL xbk(x)dx =: (x, bk) (4.32)

so that

N
th(x) = x - 1 bk(x)(x, bk), (4.33)

k--1

and the L2 norm of the error oh - a - oh - x is given by

N

II 0, -o a 0= _(bk)2  (4.34)
k=1

which does not tend to zero. Hence our solution scheme with the enlarged V, is not

acceptable.
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4.2 Analysis of Stationary Incompressible Fluids (the Stokes Problem)

We consider now the following model problem in a smooth domain fn C JR2

find u E (H1(fl)) 2 and p E L2(fl)/IR such that

1n grad u :grad vdf + fpdiv vdl = ff -v dil V v (4.35)

fq div udfl = 0 Vq

which is again of type (3.49) for

V = (Ho(11))' = {v E (L2 (fl)) 2 such that grad v E (L2 (11)) 2 and vian = 0} (4.36)

Q = L2 (f2)IR = {q E L2(f), f q dfl = 0} (4.37)

and

a(u, v) =f grad u: grad v dfl; b(v, q) = f q div v dfl. (4.38)

Note again how the form of a and b in (4.38) easily determines the norms (4.36)

and (4.37) which are needed for having (3.42) and (3.43).

Problem (4.35) is the variational formulation of the problem

-Au-Vp=f in 11

div u =0 in fl (4.39)U=0 on anl

which are the governing equations of an incompressible fluids. The well-known Poir.car6

inequality:
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3c = c(fl) with f jv 2dfl <- c(fn) f jgrad vI 2dfl V V E V (4.40)

ensures now that

a(v,(v)> +)Jv Vv E V (4.41)

so that (3.47) holds with & = c/(c+1) for all v E V and we do not need to be concerned

with kernel K. In particular, we have that (3.54) will also hold (with a' = c/(c + 1))

for every choice of Vh C V and QA C Q. Hence we can concentrate our attention on

(3.48) and (3.55), that is on the inf-sup condition. As far as (3.48) is concerned we

remark that we actually have

3 Pi(Ol) > 0 such that inf su? fn q div v d >  (fO) (4.42)

which is a nontrivial result in functional analysis (see, e.g., [8,9]). We also notice that

the following result obviously holds as an immediate consequence of (4.42): for every

set V with

(Ho'(n))' C: V C_ (H1(n))2  (4.43)

we have

inf sup fn q div v dfl (4.44)

9E,,,V 11 q IIQ 11 v Iv > NO)

since the supremum over V is obviously larger than the supremum over V E (H0(fl)) 2.

In a sense we can therefore say that the case of homogeneous Dirichlet boundary condi-

tions is the most difficult to treat. This is the reason why we shall mainly concentrate

on this case only.
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Assume now that we are given a sequence of finite dimensional subspaces Vh E V

and Qh E Q and consider the discrete problem:

{ find Uh E Vh and ph E Qh such that:

a(uh,vh) + b(vh,Ph) f .f.Vhd VV, E Vh, (4.45)

b(uh, qh) = 0 Vqh E Qh.

As we have observed above, we only have to check condition (3.55) in order to have solv-

ability, stability and optimal error bounds. The following theorem, known as "Fortin's

trick" (see ref. [10]) is often useful in order to prove (3.55)[11].

THEOREM 4.1 Assume that (3.48) holds, and assume that, for every h, we can

build a linear operator Ilh : V -+ Vh with the following properties

b(v - JhV,q) = 0 v E V, Vqh E Qh (4.46)

3-y > 0 such that II hV Iv 1' II V IIv Vv E V (4.47)

where fy is independent of h. Then (3.55) holds with =/'

PROOF. We have for every qh E Qh:

b(vh, qh) b(flh v, qh)sup > sup
,kEVh Ii Vh "-v t I IhV I(V

(use (4.46)) = sup Iv q > (4.48)IEV 11 IIhV JIlv -. 8
b(v~qh)

" (use (4.47))> sup _ >
VEV '11 V jjv

" (use (3.48)) > ,/y II qh IIQJ.

where the first inequality holds since the image Ifh(V) is contained in Vh.

In many cases, it will actually be sufficient to prove that, for every qh G Qh we have
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--b~h q)> ic 11 qh -qh 11o (4.49)

where ix is independent of h and

q -L 2 - projection of qh onto the space Z0 of piecewise constants} (4.50)

Here for instance we present two classes of discretizations for which (4.49) implies

(3.55).

PROPOSITION 4.1 Assume that Qh C Co(fl) (and piecewise polynomial), and

assume that Vh is locally first order accurate, in the sense that, for every v E V there

exists a vt E Vh with

( ii V - V' llL2< c1h 11 v iv (4.51)

1V' V< C2 11 iIv . (4.52)

Assume finally that the decomposition is quasi-uniform, in the sense that the max-

imum diameter h is bounded by c3hmin (hmin = minimum diameter of the element).

Then (4.49) implies (3.55).

PROOF. We note that for every qh E Qh there exists a V E V such that

b(tJ,qh) -

-I > 11 qh I1k (4.53)

Hence

41



- 41 -. 1V 1b(v, ,q,,) >b(iJ',qh) = (+) =

b(tJ'-,q,) + bo, q,) > (use (4.52))

11 lvl ,h 11bV, qhV
b(VJ '-V, q) + b(, qh) > (use (4.53))

> b(v'-0, qh) + i qh -Q= (definition of b)
C2 II ' liV (4.54)

fn qh div (v' - i)dn + qh IQ (integrate by parts)
C2 11II'v

_ VI- )• grad qhdfl- I IvI7'+IlI q JQ__

1 fqh Hg- 1I of I1 IIgrad qh 1o>

_ (use (4,1 11 q, I1, -1 II grad qh 11o h.

Now a simple scaling argument. (using the quasi-uniformity of the mesh) shows that

h 11 grad qh 11o- C4 11 qh - qh 110 (4.55)

and from (4.54) and (4.55) we have

b(vak, qh
sup 11vII q> , I1o -cs I qh - qh IIo (4.56)

It is now clear that (4.49) and (4.56) imply

( x b(vh, qh)A-- II q o (4.57)

\ CS \tJEVA, 11 VII J C5

and (3.55) holds with j3" - 0
1 + xc/cs

REMARK 4.1 The quasi-uniformity assumption is actually not necessary. We used

it only in order to simplify the argument. See [1,12] for the general case.
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PROPOSITION 4.2 Assume that we know that, for all qh E Z'0

sU, b(vh, q%) i' I qh 1o. (4.58)1 1 II VA I~v-

Then (4.49) implies (3.55)

PROOF. Wz have, for every qh E Qh

b(vh, qh) b(v + ,,

11 Vh 11V t~hE 11 Vh 11V11 V V
b(v, qh) - b(vh,qh -q) (4.59)

-> '11 q l 1io -ll qh - qhio.

Now from (4.59) and (4.49) we deduce (as in (4.57)) that

sup > " II q1 l1. (4.60)
VEI. 1 V, DIV 1 + X~

( Finally from (4.49) and (4.60) the result follows, since qh and qh - qh are orthogonal -

in L 2 (fl).

REMARK 4.2 As we can see, (4.49) implies the inf-sup condition in an impressive

number of cases: using (4.49) basically all the approximations with continuous pressure

can be considered, as well as all the choices of Vh that give a stable pair when used

with a piecewise constant pressure. This second case for instance holds true, if for

triangular elements, Vh contains the space of piecewise quadratic functions, and if for

quadrilateral elements, Vh contains the reduced (8 nodes) biquadratic functions. If we

succeed in giving an easy test for (4.49) then we can treat a very wide number of cases.

Such a test will be a consequence of proposition 4.3 below.

REMARK 4.3 More generally the condition we need on V4 (in order to have (4.58))

is the following: we can use as degrees of freedom the values v .n (normal component
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Ilk

of velocity) at midpoints of edges (respectively, faces in B 3). Indeed, if this is the case,

we can (roughly) consider a "Fortin interpolator" II% such that

f(v - fhv) . n de = 0 for all edges (faces) e (4.61)

and

"v = flhv" for the other degrees of freedom (4.62)

From (4.61) and (4.62) we have now, for every qh E Lo

f div(v - IIhv)qhdK= ( use Gauss theorem) = f (v - IIhv). n'hde =JK JBK(4.63)

(use (4.61) on each e) = 0,

for every element K. This gives (4.46) for Qh = O, which is the essential step (through

Theorem 4.1) in order to have (4.58). Note however that the actual proof of this fact

has some more technicalities (see (1,131 for similar arguments). It is clear by now that,

in designing a new element, to satisfy (4.49) is the essential step in almost every case.

"OPOSITION 4.3 Assume that PI and P2 are unions of elements, with P n P2 = 0.

ii "". fo: i = 1, 2, we have for all qh E Qh

sup fp, qh divv,%
VEVh > iI 11 q) -qh jL2(Pj) (4.64)

Vh = 0 in fl \ II vh IIV
then

sup fPup qh div Vh
Vh E V 1h iv > rqh - II,.jL2 p,) (4.65)

vh=Oin fl\ (PI U Pv)

for all q, E Qh and-with
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ic> min(xi, X2). (4.66)

PROOF. The proof is elementary. From (4.64) we have, for all qh E Qh, two

elements v' E (H1 (p,)) 2 n Vh(i = 1,2), such that

b(Vi, ql) =iX, Ii qh% _ qh 112(Pj (4.67)

and

11 V iv :5 1 q, f q% 11L,2(pi) (4.68)

Taking vv 1 +0we have

2

bL2(p,) (use (4.66)) K 11 q- q1 lL2(pUp2) (4.69)

and

'II vV11 v II q h - q L2(PIuP2) (4.70)

and (4.69) with (4.70) implies (4.65).

REMARK 4. 4 The condition P, n P2 = ,as we can see from the proof, is not crucial.

Its only purpose is to avoid a factor 2 in (4.619) and (4.70). However, we always think

of using the result in the "disjoint" case.

REMARK 4.5 In (4.64), (4.65) the choice of q1 as an element by element projection

onto the space Zo of piecewise constants is unnecessary. We might as well use a "patch

by patch" projection, that is we might assume that fh is constant in every patch (and

equal to the mean value of q). On the other had, the chok.e 0 (which would
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give directly the inf-sup condition without passing through Propositions 4.1 and 4.2)

is not allowed. If q, has zero mean value on P U P2 it does not necessarily have zero

mean value separately on P and on P2. But (4.64) is unrealistic if the right-hand side

does -not have zero mean value. Finally let us note that, if qh is the element by element

projection and qh is the patch by patch projection then

II q- jh IL>11 q- ,1L2

REMARK 4.6 Proposition 4.3 deals with two patches. It is clear that the argument

applies as well to any finite number of patches: the smallest xi gives the global x.

REMARK 4.7 It is very important to point out that conditions (4.64) do not depend

on the-size of the patches. Assume that we have, for a given patch, say, of size one

sup fp qh div Vh >11 q% - qh 1IL2(p) (4.71)
V,EVA,(P) II h IIcH(P)

for all qh E Qh(P), where Vh(P) is a finite element subspace of (H01(P)) 2 and Qh(P) is

a finite element subspace of L2(P) and finally qh is the mean value of q% on P. If we

shrink P to a small patch P' of size h by the cha:. ge of variable

P D x = elh, e E P' (4 .72)

and if we change the finite element spaces accordingly, we have

sup f p " qh' div v K 11 q - Qh IL2 (P.) (4.73).,E,, 11 , t 11IP.) -
exactly with the same re as in (4.71).

The same is true if, instead of the change of variable (4.72) we apply any other

change of variable which is "affine", that is with constant Jacobian: actually a distortion
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in the shape might change rcto some 6. ic, where 8 depends on the amount of diztortibn

(essentially if J is the Jacobian matrix, 8 will depend on IJ-I. 11 J Il2 and IJ. II j1  12),

and for reasonable distortions ic will remain greater than zero. -

Proposition 4.3 and all the remarks after it suggest now a strategy for checking the

inf-sup condition, if we have a continuous pressure field or if we know already that the

velocity space Vh under consideration can be used with piecewise constant pressures.

Assume that we can find a finite number of "representative patches", P1, P2 ," "" PR such

that one can cover the decomposition with affine images of the P's. For each patch

Pi we then check if the discrete problem is uniquely solvable on the patch (for both

velocity and pressure) with homogeneous Dirichlet boundary conditions for velocities

and obviously discarding the constant value of the pressure on the patch. If this is true,

then a constant xi must exist: we do not need to compute it, we just want to know

that it exists. Finally, the smallest ,ic will give the constant X in (4.49) and the inf-sup _ )

condition will hold.
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5. CONCLUDING REMARKS

Our objective in this paper was to rcview and discuss conditions for the stability

of mixed finite element formulations. We also presented a numerical test that can be

employed to check whether a given mixed finite element Zormulation for the general

Stokes problem satisfies the mathematical conditions of stability and optimal error

bounds.

While the general mathematical theory for mixed formulations is quite well estab-

iished, both for the continuous and discretized problems, the actual detailed use of

that theory for the design and analysis of mixed finite element formulations can be

a very difficult task. We note that quite effective mixed finite elements that satisfy

the mathematical conditions of stability and optimal error bounds are available for the

solution of incompressible fluid flow [1] and the analysis of incompressible or almost(
incompressible solid media [1,14,15]. However, the situation is quite different, for ex-

ample, in ti field of analysis of plate and shell structures [16]. Here numerous mixed

finite elements have been proposed but mathematical analyses are hardly available. In-

deed the construction of effective mixed )late and sheli elements that can be analysed

and satisfy the mathematical conditions of stability and optimal error bounds is very

difficult, and such elements are now under active research, see for example references

[16-18].
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I. INTRODUCTION

The .ergence of new supercomputer architectures is helping to revolutionize the mod-

eling process for large-scale physical problems. The advance in computational capabilities

has allowed the incorporation of more physics in the model, thereby greatly increasing the

complexity of the mathematical models and the simulation process. If decisions arr tn, be

t made based on the results of a simulation, we must be able to determine the reliability of

the modeling process. Both a priori and a posteriori error estimates are important in as-

sessing the accuracy of the simulation and in helping to determine an adaptive strategy to

improve the accuracy where needed. Unfortunately, none of the existing large-scale tommer-

cial codes have rigorous error estimation and adaptive improvement capabilities. The role

of a posteriori error estimation in grid refinement and adaptivity is considered here.

There are four aspects of reliability which are tightly interrelated. First, an understanding

of the accuracy of the modeling process must be obtained. The choice of the model, boundary

conditions, and computational domain can greatly affect the properties of the solution and

the effectiveness of the modeling process. Babu~ka has given an excellent introduction to

this aspect of modeling in [1].

Once a model has been set, the properties of that model, including existence, uniqueness,

and regularity, must be understood. Then, a choice of discretization scheme is made and

a priori error estimates are obtained. A priori estimates, based upon knowledge of the

general properties of solutions for the model equations and the approximation properties

of the discretization methods, can give us a qualitative assessment of the error and the

asymptotic rate of convergence as the number of degrees of freedom in the approximation

Ctends to infinity. A priori estimates provide pessimistic indications of the error based upon
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upper bounds for Sobolev norms of the solution. However, they usually do not provide

much information abmut the actual error in the discrete approximation. Nex ..rtheless, they

can be very effective when used in extrapolation techniques [2-5. They can also include

superconvergence results which can be very useful in defining effective adaptive strategies.

Techniques are being developed [6-8] to combine these ideas with finite difference methods

for estimation of higher derivatives in more rigorous error estimation and adaptive methods.

Once a computational result has been obtained, a posteriori error estimators and in-

dicators can be utilized to give more specific assessment of errors and to form a basis for

many adaptive strategies. A posieriori estimators can produce reliable local error assessment

judged by effectivity indices. They should be locally computable and can utilize various

norms or different error measures, based upon the type of error control desired. There is

question as to which a posteriori error estimators can be used to produce the most reliable

and effective adaptive strategies. Efficiency is the key property of an effective error indicator,

especially for large-scale problems.

The efficiencies of a solution method and an associated adaptive process are heavily

dependent upon the selection of computer architecture, data structure, and implementation

strategy. The domain specification and discretization can be aided via concepts from CAD-

CAM. Shephard and colleagues have given important surveys of mesh generation and its

associated data structure [9-11]. Concepts of data structure and efficient implementation

procedure for time-dependent problems are considered to some extent below.

Although each of the four topics described above is the subject of substantial research

in its own right, they should not be considered separately. The strong relationship between

/ each of these aspects of modeling must be investigated. The focus of this paper is on a
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posteriori error estimation; however, we show that concepts of implementation and data

structure are critical for the effective development and use of error estimators, especially in

large-scale dynamic problems.

Given the results of a scientific computation, we want to accomplish two tasks. First, we

must be able to assess the accuracy of the computation to see if this level of accuracy meets

our design criteria. If it does not, we must define an adaptive strategy to reduce the error in

a fixed way. Thus, we state our major goals. Given an initial discr ce model with a specified

input topology and with boundary and initial conditions that yield a unique solution to our

problem, and given an error measure and a specified tolerance, we must choose an adaptive

strategy (with error assessment) to ensure that the resulting computational procedure will

produce errors satisfying the given tolerance in the given error measure.

In [12], Babuka formulated some of the principle concepts and approaches to adaptivity.

He introduced notions of feedback and adaptivity and their relationship to a posteriori

error estimation and then formulated illustrative theorems in a simple linear, elliptic model

setting. He and his colleagues have developed error analyses for one-dimensional problems

[13-15]. An important goal is to extend this theory to more complex problems in higher

dimensions. These mathematical concepts must form a solid foundation upon which we

develop implementation strategies for complex engineering problems.

Given a computational procedure, we define a feedbach mechanism as a specific set of

rules for evaluating the result of the computation, assessing its accuracy in some norm or

error measure, and defining a strategy for changing the solution process to improve the

results. The feedback mechanism produces a sequence of rules and an associated sequence

of approximate solutions {iii} ,i = 1, 2,..., to the problem. In order to decide when to



(

terminate this process, we need an error estimator ;(i); then, the solution fis is accepted if

04( ) _< 'r 11 iii 1( .1

where T and IL " are a priori given tolerances and norms, respectively.

Clearly, there are many possible feedback approaches to any problem. The important

concepts are the choice of an error measure, a convergence rate measure, a work measure,

and a tolerance. Obviously, these choices are heavily interrelated.

The goal of computation is to obtain the "best" solution possible for a given computational

cost. We define an adaptive process as a feedback approach which is optimal with respect

to certain clearly defined objectives. Thus, in order to specify an adaptive process, we must

S ( clarify in what sense we mean optimal and with respect to which criteria. We could use each

of the feedback concepts mentioned above separately as a definition of optimality. Most

adaptive processes described in the literature use error and/or convergence rate r-'sures to

determine optimality. Although these measures work well for static, elliptic problems, they

can produce highly ineffective adaptive strategies for large-scale, time-dependent pioblems.

For these problems, the aspects of work measure such as data structures, available computer

architectures, and implementation strategies are critical. We address some of these ideas in

Section III.

The use of efficient adaptive strategies for large-scale, time-dependent codes is still in

its infancy. Many modern commercial codes incorporate feedback, but very few arc truly

adaptive with respect to work measures. A detailed, rigorous mathematical analysis of

adaptive programs is currently available only for some one-dimensional problems (13-15]. In

fact, even the one-dimensional problems are not totally understood. We need to determine

5
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mathematical conditions under which the estimators currently being used are valid (e.g. bad

mesh spacings, rapidly varying solutions, etc.). We need to determine more robust error

estimators for more difficult problems. Also, there are still major differences between the

aspects of design criteria and design certification. As will be shown in Section III, there

are fundamental differences between adaptive strategies 'for static and dynamic problems.

Finally, information theory currently does not play a significant role in adaptivity, although

it has enormous potential.

in Section II, we will present a summary of error estimation and adaptivity techniques

and concepts. We also present the major types of refinement or adaptation strategies. In

Section III, we discuss the need for efficiency in large-scale, time-dependent problems and

discuss recent effective local spatial and temporal adaptive strategies for these problems. We

Cthen discuss domain decomposition techniques for de eloping adaptive strategies on large

fluid flow problems with various work measure criteria in Section IV.

II. ERROR ESTIMATION AND ADAPTIVITY

Traditional error estimates for finite difference and finite element methods are a priori

bounds, predicting the asymptotic rate of convergence as the mesh size tends to zero. Unfor-

tunately, this gives us little direct information about the true error for a fixed grid size and

approximation space in a difficult problem. However, in many physical applications, there

are special features such as wells, nozzles, cracks, corners, obstacles, point loads, etc., which

are fixed in location but which greatly affect the solution globally as well as locally. In many

of these applications, a special point creates a singularity in the function of interest around

the point. Often, these singularities are of the form r- 8 or log r where r is the distance

to the special point in the domain and s > 0 is a real number which gives the strength of

6
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the singularity. The a priori knowledge of the strength of the singularity can be used very

effectively in adaptively grading the grid to take advantage of the asymptotic behavior of

the function near the singularity.

We now turn our attention to a posteriori error estimates that are based upon information

obtained during the solution process. We will distinguish between locally computed error

indicators and globally valid error estimators. This distinction is not uniform in the litera-

ture, aid many of the a posteriori error estimates or estimators are actually local without

proof of global validity. Of course, we hope to use indicators to develop estimators due to the

computational complexity of global solutions. Full reliability requires global estimation, but

important local error assessment can be obtained from local indicators. Adpative improve-

ment algorithms can often be developed using inexpensive error indicators. Essentially all

S( of the work on rigorous a posteriori error estimators has been associated with the finite ele-

ment method. However, various locally computable indicators have been utilized effectively

to define adaptive improvement strategies for finite diffference methods. Work is necessary

in extending the finite element theories to finite difference methods.

The a posteriori error estimators are termed asymptotically correct if the ratio of the

estimator to the true error converges to one as the true error tends to zero. Thus, in order

to assess the reliability of these estimators, an effectivity index is defined [12,15] as follows:

e
o I =le I---I' (2.1)

where c is the a posteriori error estimator and II e II is the chosen norm of the error. The

estimator is asymptotically correct when 0 - 1 as ie IIj - 0.
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For practical application of an error estimator, it is important that 10 - 11 be small when

the error 11 e 11 is of the order of 10% of the norm of the solution, and should decrease as the

error decreases. It is also preferable that we over-estimate the error and that 0 be greater

than one. The asymptotic correctness of the error estimator is related to superconvergence

effects. The mathematical theory of error estimators is discussed in [14-18].

Locally computable a posteriori error estimators have been developed primarily by

Babu~ka, Rheinboldt, Bank, Oden, Zienkiewicz, Flaherty, Johnson, and their colleagues

[5-8,12,13,15-36]. Excellent surveys of adaptivity and a posteriori error estimation have ap-

peared in [37-39]. Under suitable assumptions, their error estimators converge to the norm

of the actual error as the mesh size tends to zero. The most recently developed estimators

are asymptotically upper bounds for the norm of the true error and can be computed locally,

( element-by-element (see [401). These a posteriori error estimators are extremely important

for problems involving elliptic partial differential equations in determining the reliability of

estimates for a fixed grid and a fixed error tolerance in a given norm. The error estimators

are used to successively refine locally until the errors in some specific norm are, in some

sense, equilibrated. These techniques drive the local refinement at only one or two levels per

iteration. Thus, obtaining an "optimal" grid in the sense of equilibrated error in some norm

usually takes several iterations. Although the local error estimation is a relatively small part

of the solution of an elliptic problem, this is not the case for many time-dependent problems

with changing local properties. In Section III below, we discuss adaptive techniques which

are far more efficient for transient problems.

There are two major types of a posteriori error estimators. The first can be described as

residual methods. They depend strongly upon the governing operators and thus require care

in extensions to more complex nonlinear problems. Although they may require extensive

8



computation to obtain,, they can produce effectivity indices that are often quite near to

unity. The indicators associated with these methods can be local and fairly inexpensive to

compute; the indicators can also help to define effective adaptive improvement algorithms.

The second type of error estimator arises from interpolation techniques. A priori esti-

mates and approximation theory play important roles in this class of estimators. Since they

are independent of the operator, they can be more general, but often less effective. They

generally require a posteriori estimation of higher-order derivatives and hence rely heavily

upon superconvergence properties. Although these indicators could have poor effectivity

indices and thus may be less useful for reliability, the error indicators are cheap and can

often be quite useful in developing adaptive improvement techniques.

Depending upon the application, various derivatives of the solution (e.g. buckling loads,

stresses, or stress intensity factors) may be as important as or more important than the

solution itself in terms of adaptivity and design certification. Thus, different norms or error

measures should be used to control different variables. Pointwise estimation of errors is con-

siderably more difficult than the evaluation of local energy norm errors, which is commonly

used. Information on higher-order derivatives for higher Sobolev norms can often be obtained

via post processing. The analysis and effectiveness of many of these techniques involve con-

cepts of superconvergence and should be combined with a priori estimation methods.

Several questions still deserve attention. How should we use error estimators? What can

we prove mathematically about the validity of various estimators? Under what conditions

are they valid? How can we compare different estimators? Can we use indicators effectirely

to determine not only where but how to improve the process? These are subjects of future

(t research.
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When finite element methods are used' to discretize model partial differential equations

and to approximate the associated functions that have fixed points oi' singular behavior,

there are several ideas for resolving the rapid function growth around the points. Employing

these techniques usually amounts to adding more degrees of freedom around the special

point to better approximate the rapidly changing function values. One method, commonly

called the p-version [14,19,23,28], utilizes higher-order polynomials near the singular points

to give better approximation there. Another idea, commonly called the h-version [3,14,19-

21], augments the grid around a singular point to obtain better resolution. For certain

singularities, the combination, the h-p-version [5,14,32], has been shown to be optimal [12].

Also, nodes can be moved to achieve properties of the h-version with fewer unknowns and

hence smaller matrices. The methods [2,26,33,34,41,42] termed the r-version are extr'.mely

( efficient for one-dimensional problems, but are considerably harder to implement in higher

dimensions.

The p-version requires some additional complex code in utilizing the higher-order methods

and performing the associated higher-order quadrature techniques. The use of hierarchical

basis functions to gradually build up higher-order elements instead of more standard basis

functions has been a very efficient way to use the p-version and also somewhat simplifies

some of the associated quadratures. The h-version has received more attention for very large

problems, partially due to the greater sparsity of the associated matrices, and due to their

applicability for finite difference methods.

There are some substantial differences between the theory and application of h-mcthods

and p-methods. In h-methods, h < 1 is the parameter and p is the constant. Thus, if 0 from

(2.1) satisfies

10
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I0 115 C(p)h' (2.2)

for some a > 0, then C will depend strongly upcn p; as p - oo, C -- oo. For the p-method,

p > 1 is the parameter and h is constant. Thus,

II 0 11 5 C(h)p- . (2.3)

In the h-p-method, both h and p are treated as parameters. In order to obtain a corresponding

convergence rate, we let N be the number of degrees of freedom. Then one can show [43]

that

II0< C exp(-N)3 , (2.4)

where s > 0 and C is independent of both h and p. In this case, exponential convergence

can be obtained, theoretically. These rates have also been achieved in practice for a variety

of different applications.

III. STATIC VERSUS DYNAMIC ADAPTIVE IMPROVEMENT

Error estimation and adaptive grid improvement are essential in many different large-scale

applications. For specificity, we illustrate the concepts involved via problems related to fluid

flow in porous media, although many different appications share the same properties.

Mathematical models of large-scale, time dependent, fluid-flow processes involve large

coupled systems of nonlinear evolutionary partial differential equations. In, order to com-
/

pare the results of the models with physical measurements to assess their reliability and to
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make decisions based on the models, the partial differential equations must be discretized

and solved on computers. For example, field-scale simulations of fluid flow in porous me-

dia normally involve reservoirs of enormous size although many highly localized phenomena

often govern the transport of the fluids. Uniform gridding on the length scale of the local

phenomena would involve systems of discrete equations of such great size as to make solu-

tion on even the largest computers prohibitive. Therefore, local adaptive grid improvement

capabilities and efficient solution processes for the resulting discrete models are becoming

more important in reservvukr simulation as the fluid-flow processes arising in the applications

become more complex and involve more localized phenomena in enormous problems.

In this section, we present examples of localized phenomena, both static and dynamic,

that arise in field-scale reservoir simulation. These examples serve to illustrate the difficult

(problems related to data structures and implementation that arise in many large-scale time-

dependent applications. We see the need for efficient computational algorithms designed to

take advantage of emerging computer architectures. In the applications described below, we

see the dramatic difference between efficient adaptive improvement algorithms for static and

dynamic problems. In Section IV, we present domain decomposition techniques which allow

adaptive refinement without destroying tne efficiency of the underlying large-scale codes and

are widely applicable.

For large problems that require the solution of extremely large nonlinear/linear systems

of equations, the sparsity structure and banded features of the system matrices can be

exploited heavily by special algorithms for present day supercomputers. Many man years

have been invested to produce highly vectorized codes that work extremely well for structured

(tensor-product) grids for finite difference discretizations. When local improvement strategiesC
were attempted in these codes, the banded structure of the matrices and the corresponding
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ease of vectorization and efficiency of the codes were destroyed. Although very effective

adaptive strategies might be developed with error or convergence rate measures as criteria

for optimality, the work measure is greatly increased and the overall efficiency of the codes

is reduced if not destroyed. In order to retain the efficiency and reduce ,he work measure,

we must concentrate on data structures and associated solution algorithms that allow for

effective use of supercomputer architectures.

One particular data structure, used for local refinement calculations for large-scale reser-

voir simulation proble'ns, was developed by Uhler, Jones, and the author at Mobil's Field

Research Laboratory aud is described in [44,45]. It was developed to take advantage of

strengths of both the Rheinboldt-Mesztenyi structure [46] and that of Bank and Sherman

[25]. This structure, more closely related to that of Rheinboldt and Mesztenyi, has been

(modified to efficiently support both mesh refinement and the removal of mesh. Neither the

Rheinboldt-Mesztenyi nor the Bank-Sherman data structure could allow efficient grid re-

moval; they caused the entire data structure to be generated from scratch for this capability.

Thus, although they were extremely effective for elliptic problems, they were inefficient for

dynamic applications. The improved data structure supports a gri," refinement capability

having a set of predetermined macro-cells. Each macro-cell can be locally subdivided after

error estimation in an energy norm by a repeated nested refinement into local elements or

cells.

The use of refinement at any level of a nested tree structure allows truly local refinement

and the equilibration of error in the prescnceJo Jocal phenomena. However, since the-length

of the branches of the tree can vary greatly, the vectorization of algorithms with this type

of data structure is significantly more difficult. There is, however, potential for parallelism

in these algorithms [45,47]. Even for static problems where error equilibration has been
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extremely successful, adaptivity with respect to the work measure requires considerable

attention to data structure and efficiency of implementation for large-scale problems.

For truly general local refinement, a complex data structure like that discussed above and

the associated complications to the code are necessary. If local refinement is only needed in

certain regions or at a very few special points, a technique termed patch refinement may be

an attractive alternative. These concepts do not require as complex a data structure but do

involve ideas of passing information from one uniform grid to another. Berger and Oliger

ha"e been using patch-refinement techniques for hyperbolic problems using finite difference

discretizations for some time [48,49]. The local patch-refinement techniques have proven

to be very effective in 3-dimensional field-scale petroleum simulations [50,51] for obtaining

local resolution around fixed singular points, such as wells, in a reservoir. Although the

(patch approximation technique is extremely useful in the context of local refinement around

a fixed point or region, it can be even more important for dynamic problems.

For time-dependent problems, there is often considerable information which can be used

from preceding time steps to help drive the adaptive process. In parabolic problems, where

the solution changes smoothly in time, the "optimal" grid used at the previoL.; time step

should be a very good approximation to the desired grid at the advanced time step. Thus,

beginning with a new coarse grid at each time step and using the elliptic techniques of error

estimators to define the local refinement algorithms would be wasteful. For small parabolic

problems, when the grid is changing very slowly in time, a much better technique would be

to take the grid from the last time step, apply local grid analysis to determine where new

grid is needed and where refinement is no longer needed, and then to change only the grid

that requires improvement. This requires a data structure that allows efficient removal of the

grid as well as grid enhancement. In these techniques, great care must be taken to preserve
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mass balance when grid is removed and the flow properties must be averaged and described

on the new coarser grid.

Although this may be an efficient process for fairly small time-dependent problems, it

is generally inefficient to change the grid at each time step for large-scale problems. For

large time-dependent problems, iterative processes are generally much more efficient than

direct solution techniques. For problems with smoothly changing solutions, the same pre-

conditioner can often be used for several time steps, since the matrices evolve smoothly;

this greatly saves in computational effort. If the size of the grid and hence the number of

unknowns is constantly changine -',!early the preconditioner must be altered at the same

time. Similarly, as mentionef ca j!ier, changing the number of unknowns greatly hinders

vectorization techniques. Therefor , a considerably more efficient alternative to constantly

•( adapting the grid is to use a larger refined area within which the action is maintained for

several time steps and to move the patch less frequently, & ",er several steps. This idea is

similar to the dynamic patch-refinement techniques of Berger and Oliger [48,49].

The adaptivity techniques of Berger and Oliger move the patch approximately every three

or four time steps using sophisticated clustering techniques. Within the patches, Richardson-

type methods are used to estimate the local truncation error to decide where grid refinement

is needed. The error estimators are independent of both the partial differential equations and

the difference methods used to-discretize them. These methods have considerable potential

for use in large-scale fluid-flow problems in addition to the hyperbolic problems to which-

they have bccn applicd.

For hyperbolic or advection-dominated parabolic partial differential equations arising in

fluid-flow problems, sharp fluid interfaces move along characteristic or near-characteristic
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directions. The computed fluid velocities determine both the local speed and direction of

the fronts, identifying the regions where local refinement will be needed at the upcoming

time steps. This information should be utilized in the adaptive method to move the local

refinement with the front. We are currently experimenting with using the computed fluid

velocities to move the patch grids in characteristic directions in quantum jumps. Thus,

a posteriori information is being used to determine how to adapt the grid in an effective

manner.

The patch refinement techniques described above have been used to follow fluid interfaces

in multiphase pioblems in [52-55]. These methods utilize a coarse grid to define fluid ve-

locities which are then combined with a modified method of characteristics and local, patch

refinement around the moving fronts.

Another problem that has plagued large-scale reservoir simulation is the difficulty in

treating local transients around wells in fully implicit codes. When one well is rapidly opened

or shut to flow, the local fluid properties around the well change sufficiently quickly that

the global Newton-Raphson method used to linearize the flow equations does not converge.

The present industrial solution is to cut the time step over the whole reservoir to obtain

convergence, even though the difficulty is highly localized. This is extremely wasteful, and

computationally intensive. The domain decomposition techniques discussed in the next

section have been used to develop accurate and efficient local time-stepping algorithms [56,57]

and to obtain local initial guesses for the Newton-Raphson iteration.

The applications described above indicate that for large-scale dynamic problems, efficiency

of implementation is the key to adaptivity, and major advances have been made in this

area. We cannot rely only upon error or rate convergence measures but must consider
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computational costs. Techniques based on domain decomposition ideas give us efficient

computational procedures. Therefore, the work measure can be used more effectively with

these algorithms due to their superior computational efficiency.

IV. ADAPTIVE IMPROVEMENT VIA DOMAIN DECOMPOSITION

TECHNIQUES

In large-scale simulation problems, attempts to implement local grid refinement can of-

ten destroy the efficiency of existing codes. In this section, we describe patch refinement

methods that can easily be incorporated into large existing codes without .eriously affect-

ing their efficiency. The methods discussed maintain accuracy of the discretization across

patch interfaces and can also take full advantage of the parallel and vector capabilities of

the emerging supercomputers. These techniques are related to various domain decomposi-

tion methods [52-63]. High accuracy is obtained throughout the computational region 'by

incorporating local refinements in patches wherever they are needed. A composite grid is

obtained by superimposing these refinements on a quasi-uniform grid on the original domain.

Previous techniques usually have no systematic way of dealing with such questions as inter-

face interpolation, mass conservation, and degree of grid overlap, and also usually involve

the solution of the coarse-grid problems with the regions corresponding to the refinement

removed. This destroys the banded structure and ease of vectorization of the matrices for

coarse-grid regions.

In the mcthods discussed bclow, the problem is formulated with a composite operator

on the composite grid. The techniques are iterative procedures which drive the residual of

this composite-grid operator toward zero. Composite-grid operators for the finite element

discretization were derived in [58,62,63]. Two similar composite-grid methods are the FAC
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method [59,60] and the BEPS method described in [52,58,61,62]. Both methods can be

described as preconditioners for other iterative methods [58,60] or as full iterative methods

[59,61]. When the methods are used for point-centered finite differences or finite element

methods which satisfy a variational principle, they do not require a scaling as an iterative

method; if cell-centered finite difference methods are used, the analysis is considerably more

complex and a scaling may be necessary for rapid convergence [61,62]. Complete error

analyses for finite-difference-based composite-grid operators for variable coefficients appear

in [62]. Local time-stepping methods based upon these same techniques will appear soon

[56,57]. Use of local refinement in conjunction with mixed finite element methods has been

described in [57,63].

Essentially all of the concepts for the applications described above can be related to a

C- general algorithm and described in simple algebraic terms. See [64] for a more detailed

description. We outline the procedure by considering the following discrete problem on a

composite grid w:

Ay= b.

We solve this problem using a preconditioned conjugate gradient method. Here, we present

two methods for constructing a preconditioning matrix B.

We first introduce some notations. We let fl be our computational domain and consider

two grids on Q2. We introduce the matrix A corresponding to an approximation of our

problem on a regular, quasi-uniform grid Co on Q2. Let Q?2 C 1 be a region that contains

some local phenomenon that may require better approximation. Let III = 11 \ f12. Then fl,

and f12 produce a natural decomposition of Q. The composite grid w has the same grid as

in RI, denoted by cil, but has refined grid in S12, denoted by w2 ; c52 denotes the coarse-grid _ -
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(Y1)ad: ) then this induces
points in 112. If y and k, are partitioned into y =(Y) and (k)t s

corresponding partitions for A and A:

A llA1  A12  X1 (A i 12

A A 21 A 22 )' j 21 A 22

Both the FAC-preconditioner [59,60] and the BEPS-preconditioner (Bramble, Ewing, Pas-

ciak, and Schatz [58]) follow three common steps. The common steps in the algorithm for

solving By = b are:

(i) solve the fine-grid problem in Q2

AnlYr = b

(ii) restrict the defect on the coarse grid

d = pT (b -- A(Y))=PT(b2- A 21A'bi)

(pT is the restriction operator);

(iii) solve for the coarse-grid correction

The FAC and BEPS methods differ in the last step:

(iv) (FAC) interpolate this correction over the fine grid in 072

then,

y =B-lb A, + c.
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(iv) (BEPS) find the harmonic component yH on the fine grid

=jy AN 2 ) where E ~
kC2J

then,

yB-1 b = (Y±Y'
C2

An important feature of these methods is that both preconditioning matrices B are spec-

trally equivalent to the composite-grid matrix A with constants that do not depend on the

mesh size [62]. Therefore, the preconditioned iterative procedures based upon gradient-type

methods are optimal.

These two methods have one common step-solving the coarse-grid problem, which (we

I ( assume) can be done very efficiently by some fast solver or within the technology of the

existing code maintaining a high level of vectorization and/or parallelization. FAC and

BEPS differ on one important issue: on the last step, BEPS solves one more problem on the

fine grid (harmonic component), securing in this way the symmetry of the preconditioning

matrix B. Instead of that, FAC interpolates the coarse-grid correction and adds it to the

fine-grid component. Thus, in general, in FAC we solve one fine-grid problem less, but

we use interpolation. A restriction is that the interpolation operator P should be equal

to the transposed restriction operator (from fine to coarse grid); moreover, the composite-

grid matrix A and coarse-grid matrix A should satisfy the relation A = PXPT (so-called

variational condition) [59]. This is automatically satisfied only for finite element problems.

The FAC also produces a nonsymmetric preconditioning matrix B, and generalizations of the

standard CG-methods that do not take advantage of conjugacy should be used. However,

as has been shown in [62], this matrix is symmetric in a certain subspace. Performing - _
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the iteration within this subspace will lead exactly to the last local problem of the BEPS

preconditioner. See [641 for more details.

The domain decomposition concept mentioned above involves the development of a pre-

conditioner. This preconditioner is novel in that the task of computing its inverse applied

to a vector reduces to the solution of separate matrix systems for the local refinements and

the matrix system for the quasi-uniform grid on the original domain. Note that this quasi-

uniform grid overlaps the regions of local refinement, and that its corresponding matrix

problem remains invariant when local refinements are dynamically added or removed. This

local refinement technique can be incorporated in existing reservoir codes without extensive

modification. See [50,51] for examples of implementation of these methods in an industrial

code. Furthermore, if the nodes on the quasi-uniform grid are chosen in a regular pattern,

( highly vectorizable algorithms for the solution of the corresponding matrix system can be

developed.

In conclusion, we see that the domain decomposition techniques have enormous potential

for greatly reducing computational complexity of codes in connection with adaptive improve-

ment strategies. They allow realistic adaptivity with respect to work measure by addressing

efficient implementatioD rLhen the domain decomposition methods can be combined with

characteristic flow indicators as in [53,54] to determine how to adapt the grid for dynamic

moving front problems-a severe challenge to any adaptive method.
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ABSTRACT

We consider the solution of two-dimensional vector systems of elliptic
and hyperbolic partial differential equations on a shared memory parallel
computer. For elliptic problems, the spatial domain is discretized using a
finite quadtree mesh generation procedure and the differential system is
discretized by a finite element-Galerkin, technique with a piecewise linear
polynomial basis. Resulting linear algebraic systems are solved using the
conjugate gradient technique with element-by-element and symmetric suc-
cessive over-itlaxation preconditioners. Stiffness matrix assembly and
linear system solutions are processed in parallel with computations
scheduled on noncontiguous quadrants of the tree in order to minimize pro-
cess synchronization. Determining noncontiguous regions by coloring the
regular finite quadtree structure is far simpler than coloring elements of the
unstructured mesh tiat the finite quadtree procedure generates. We
describe finear-time complexity coloring procedures that use six .and eight
colors.

For hyperbolic problems, the rectangular spatial domain is discretized
into a grid of rectangular cells, and the differential system is discretized by
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an explicit finite difference technique. Recursive local refinement of the
time steps and spatial cells of a coarse base mesh is performed in regions )
where a refinement indicator exceeds a prescribed tolerance. Data manage-
ment involves the use of a tree of grids with finer grids regarded as
offspring of coarser ones. Computational procedures that sequentially
traverse the tree structure while processing solutions on each grid in paral-
lel and that process solutions at the same tree level in parallel have been
developed. Computational results using the sequential tree traversal
scheme are presented and compared with results using a non-adaptive stra-
tegy. Heuristic processor load balancing techniques are suggested for the
parallel tree traversal procedure.

1. Introduction

Computational demands of engineers and scientists have been one of the principal

driving forces in the development of increasingly powerful digital computers. High pro-

cessing speed is essential to applications such as real-time simulation, signal processing,

and systems involving partial differential equations. Computational solutions of existing

(and envisioned problems can easily require several hours to days on the most powerful

uniprocessor computers.

Conventional fixed-step and fixed-order finite difference and finite element techniques

for solving partial differential equations are therefore giving way to adaptive solution tech-

niques, which generally provide much greater efficiency on complex multi-dimensional

problems. Current adaptive strategies are classified as h-, p-, or r-refinement when,

respectively, computational meshes are refined or coarsened in regions where more or less

resolution is needed [1, 2], the order of accuracy is varied in different regions [3], or when

a, mesh of fixed topology is moved to follow dynamic phenomena [4]. Combinations of

hr- or hp-refinement saiegies have also been applied to parabolic [5-8], hyperbolic [1, 9],

and elliptic problems [10]. The particular combination of h- and p-refinement has been

shown to yield exponential-convergence rates in certain situations [10]. Adaptive software

typically includes techniques for constructing a posteriori estimates of local or global -)
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discretization errors [6, 11] and such reliability measures must no longer De ignored.

Advances in adaptive software and methodology notwithstanding, parallel computa-

tional strategies will be an essential ingredient in the solution of larger and more complex

problems. Models of parallel computation are based on shared memory and distributed

memory architectures. Distributed memory systems tend to have large numbers of rela-

tively simple processing elements connected in a network. Available memory on these

fine-grained systems is distributed with the processing elements at the nodes of the net-

work, so data access is by message passing. Systems built using hypercube-, butterfly-,

and grid-connected networks are all commercially available. Balancing communication

and synchronizing processing is extremely important because processing elements are typi-

cally operating in lock-step fashion in order to improve throughput and processor utiliza-

tion. Mapping specific applications to a particular network can be difficult, particularly

with adaptive methods that use hierarchical data structures. A poor mapping will require

extensive global communication which is expensive relative to network routing.

Shared memory systems involve a more coarse-grained level of parallelism with rela-

tively few processors operating asynchronously and communicating with a global memory,

altbqugh variations are common. For example, processing elements may have a local

cache memory in order to reduce, for instance, bus contention and may have vector capa-

bilities; thus, providing a hierarchy of coarse- and fine-grained parallelism.

Our goal is to develop parallel adaptive methods for partial differential equations. At

this juncture, we have been experimenting with algorithms for finite element solutions of

elliptic problems and explicit finite difference solutions of hyperbolic problems on shared-

memory computers, As described in Section 2, linear self-adjoint elliptic problems are

discretized using a piecewise linear polynomial basis on a grid of triangular elements that

are obtained by finite quadtree mesh generation (cf. Section 2.1). Resulting linear alge-

/braic systems are solved by preconditioned conjugate gradient iteration using either an

_ (o 1 . . . . .. . . . . - . . . .
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element-by-element or symmetric successive over-relaxation preconditioning (cf. Section

2.2). Parallel processing of the stiffness matrix assembly and linear system solutions on

noncontiguous regions reduces process synchronization. Coloring the more regular finite

quadtree structure is a much simpler means of determining noncontiguous regions than

coloring the unstructured mesh that the finite quadtree procedure generates. In Section

2.3, we describe linear-time complexity quadtree coloring procedures that use six and eight

colors. Two simple examples, presented in Section 2.4, demonstrate the high degree of

parallelism that is possible using this approach.

Our research on a parallel adaptive technique for hyperbolic systems, based on a

serial algorithm of Arney and Flaherty [1], is described in Section 3. Recursive local

refinement of the cells of a coarse space-time mesh is performed in regions of high

discretization error. Data management involves the use of a tree of grids with finer grids

regarded as offspring of coarser ones. Computational procedures may either sequentially

( traverse the tree structure while processing solutions on each grid in parallel (cf. Section

3.1) or process solutions at the same tree level in parallel (cf. Section 3.3). Computa-

tional results using the sequential tree traversal scheme, presented in Section 3.2, are com-

pared with results using a non-adaptive strategy. Conclusions and future considerations

are discussed in Section 4.

2. Elliptic Problems

Considca a two-dimensional linear elliptic problem in m variables having the form

-[DI(x,y)ux]x - [D2(x,y)uy]y + Q(x0Y)u = f(x,y), (x,y)e f, (2.1a)

ui (xo,) = gi(xy), (xy)E eMP, i = 1, 2, ...,m (2.1b)

[D1(xy)uxn I + D2(xy)uyn2] = gi(x,y), (x,y)ea0', i = 1,2, ..., m, (2.1c)

CJ
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where DI(xy), and D2(x,y) are symmetric positive definite m xm matrices; Q(xy) is a

symmetric positive semi-definite m x m matrix; u(xy) and f(xy) are m-vectors;

afl = a/' uf, i = 1, 2, .", m, is the boundary of the bounded domain Q; and

n = [n 1, n2]J is a unit outer normal to afl.

Th,.e Galerkin form of (2.1) consists of determining u e HE satisfying

A(v,u) + (v,f)= f vig, ds, for all vE HJ, (2.2a)

where

A (v,u) = [v.,IDjuX + v,"D2u~ + VTQu] dxdy, (v,u) =J'u dxdy. (2.2b,c)

As usual, the Sobolev space H 1 consists of functions having first partial derivatives in L2.

The subscripts E and 0 further restrict functions to satisfy the essential boundary condi-

tions (2.1b) and trivial versions of (2.1c), respectively. Finite element solutions of (2.2)

are constructed by approximating H1 by a finite dimensional subspace SV and determin-

ing U E SEN such that
m

A(V,U) + (V,o=X f Vigi ds, for all Ve SO. (2.3)
i=1 a

Selecting SN as a space of continuous piecewise linear polynomials with respect to a par-

tition of Ql into triangular finite elements (cf. Sec.tion 2.1), substituting these approxima-

tions into (2.3), and evaluating the integrals by quadrature rules yields a sparse, sym-

metric, positive definite, N-dimensional linear system of the form

KX = b, (2.4)

where X is an N-vector of Galerkin -coordinates.

2.1. Finite Quadtree Mesh Structure

Meshes of triangular or quadrilateral elements are created automatically on 11 by

using the fnite quadtree procedure [12]. With this technique, C1 is embedded in a square
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"universe" that may be recursively quartered to create a set of disjoint squares called

quadrants. Data associated with quadrants is managed using a hierarchical tree structure

with the original square universe regarded as the root and with smaller quadrants created

by subdivision regarded as offspring of larger ones. Quadrants intersecting DO are recur-

sively quartered until a prescribed spatial resolution of fl has been obtained. At this stage,

quadrants that are leaf nodes of the tree and intersect Q U ag are further divided into

small sets of triangular or quadrilateral elements. Severe mesh gradation is avoided by

imposing a maximal one-level difference between quadrants sharing a common edge. This

implies a maximal two-level difference between quadrants sharing a common vertex. A

final "smoothing" of the triangular or quadrilateral mesh improves element shapes and

further reduces mesh gradation near ail.

A simple example involving a domain consisting of a rectangle and a quarter circle,

as shown in Figure 1, will illustrate the finite quadtree process. In the upper left portion

( of the figure, the square universe containing the problem domain is quartered creating the

one-level tree structure shown at the upper right. Were this deemed to be satisfactory

geometrical resolution, a mesh of five triangles could be created. As shown, the triangular

elements are associated with quadrants of the tree structure. In the example shown in the

lower portion of Figure 1, the quadrant containing the circular arc is quartered and, the

resulting quadrant that intersects the circular arc is quartered again to create the three-level

tre shown in the lower right portion of the figure. A triangular mesh generated on this

tree structure is also shown. Mesh smoothing, that normally follows element creation, is

not shown.

Arbitrarily complex two-dimensional problem domains may be discretized in this

manner and generally produce unstructured grids; however, the underlying tree of qua-

drants remains regular. Further solution-based mesh refinement is easily accomplished by

( subdividing appropriate leaf-node quadrants and generating a new mesh of triangular or
quadrilateral elements locally; thus, unifying the mesh generation and adaptive solution
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P Boundary quodrcnt

0 Interior quadrant

L -------- -V0 Exterior quadrant

a Finite element

L-------------

I-

-~ I

II

Figure 1. Finite quadtree mesh generation for a domain consisting of a rectan-
gle and a quarter circle. One-level and three-level tree structures and their asso-
ciated meshes of 'triangular elements are shown at the top and bottom of the
figure, respectively.

phases of the problem under a common tree data structure. Tree depth in such a process

will be an explicit function of the prescribed gw,,._tric resolution parameters and an

implicit function of the refinement indicators present in the adaptive partial differential

equations software [5, 6].
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(- 2.2. Linear System Solution Strategies

Preconditioned conjugate gradient (PCG) iteration is an efficient means of solving the

linear algebraic systems (2.4) that result from the finite element discretization of self-

adjoint elliptic partial differential systems [13]. The key steps in the PCG procedure [14]

involve (i) matrix-vector multiplication of the form

q = Kp (2.5a)

*, and (ii) solving linear systems of the form

Rd = r, (2.5b)

where r and p are the residual vector and conjugate search direction, respectively. The

preconditioning matrix K may be selected to reduce computational cost. Reducing the

work involved in solving (2.5b), for example, would suggest selecting K close to the iden-

tity matrix. This, however, does nothing to reduce the number of conjugate gradient itera-

( tions, which would dictate the choice K = K Naturally, a practical choice of K lies

between these two extremes. With our additional goal of developing parallel techniques

for solving finite element problems on finite quadtree-structured meshes, we consider (i)

an element-by-element (EBE) preconditioning, based on an approximate factorizatiou of K

into the product of elemental matrices, and (ii) a symmetric successive over-relaxation

(SSOR) preconditioning.

2.2.1. Element-by-Element Preconditioning

Finite element stiffness matrices K are summations of elemental contributions; hence,

the multiplications in (2.5a) may be performed in parallel in an element-by-element

fashion. To be specific, the 3 x 3 element stiffness matrix k. for element e is expanded to

the dimension N of SN as

K e = Ceke C. (2.6a)

C.. where C. is an 3 x N Boolean connectivity matrix. The matrix-vector product (2.5a), in
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turn, may be written as

NA NA
q (I K,)p fi Ck, p,  (2.6b)

e=1 e=1

where 7 A is the number of elements in a mesh and p8 = C, p is the restriction of p to the

unknowns associated with element e. This computation may be done in parallel on non-

contiguous elements that have independent basis support; thus, eliminating the need to

synchronize critical sections that arise when processes seek simultaneous access to shared

data.

Winget and Hughes [15] describe an approximate factorization of the stiffness matrix

K that also relies solely on elemental computations and, hence, would appear to be an

appropriate preconditioning to be used in conjunction with the EBE scheduling of the

matrix-vector product described above. This factorization has, furthermore, been success-

fully applied to several finite element computations [16-18]. Carey et al. [19, 20] used

other EBE strategies with the PCG method.

To begin, we write K as

NA NA NA
K " K, = D6(I + K, )D6 = D"(I + e K )D , (2.7a)

e-- e=1 e=I

where D contains the diagonal elements of K, K, is Ke less its diagonal elements, and

E> 0 is a parameter to be chosen. Using this representation, the matrix K is factored

approximately as

1 NA
K = = D6 1 (I + &EgI,)nl(I + teK )D. (2,7b)

e=--NA

When K is used as a preconditioner for the conjugate gradient method, solutions of the

linear system (2.5b) can be performed in parallel on noncontiguous elements. Thus, the

two major computational tasks (2.5a) and (2.5b) present in the PCG can be done in paral-

lel in an element-by-element fashion without synchronizing processes, provided that non-
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- /adjacent elements are processed in parallel. Hence, a procedure for computing sets of

noncontiguous elements is needed.

2.2.2. SSOR Preconditioning

It is well known [21, 22] that SOR and SSOR iteration can be used for the parallel

solution of the five-point finite difference approximation of Poisson's equation on a rec-

tangular mesh by numbering the discrete equations and unknowns in "red-black" order.

With this ordering, unknowns at red mesh points are only coupled to those at black mesh

points and vice versa; thus, solutions at all red points can proceed in parallel followed by

a similar solution at all black points. Preserving symmetry, as with SSOR iteration, will

make the SOR method a suitable preconditioning for the PCG method.

Adams and Ortega [22] describe multicolor orderings for parallel computation on rec-

tangular grids using finite element and finite difference stencils other than the five-point

(discrete Laplacian star. However, multicolor orderings for unstructured finite element

meshes are more difficult since dependence on nodal connectivity and the polynomial

degree of the basis can be quite complex. Finding an ordering to maximize the degree of

parallelism would be equivalent to computing the chromatic number of the graph represen-

tation of the mesh, which is a known NP-complete problem for arbitrary meshes [23].

Such extreme complexity may be avoided by considering multicolor orderings for block

SSOR preconditionings at the quadrant level. To be specific, partition the stiffness matrix

K by quadrants as

K = D - L - LT (2.8a)
where

K11 10
D = .. .  L=- ... (2.8b,c)

K~ K "Q,2 0

FC
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Consider an edge of a triangular element connecai~g vertices k and 1. This edge intro-

duces a nontrivial contribution to block Kj of the block diagonal portion D of the

stiffness matrix if nodes k and I are in quadrant i. Contributions to block Kij of the

lower triangular matrix L arise when node k lies in quadrant i and node I lies in quadrant

j. (The matrices D introduced in (2.7) ad (2.8) have different meanings.)

Using an SSOR preconditioning, the solution of (2.5b) would be computed according

to the two-step procedure

X"  = o(LX n4 + LTX n + r) + (1 - co)X n , (2.9a)

Xn+I = (O(LTX n+ l + LX n't + r) + (1 - o)Xn , n = 1, 2, ", M. (2.9b)

Thus, each block SSOR iteration consists of two block SOR steps; one having the reverse

ordering of the other. Typically, M = 3 SSOR steps are performed between each PCG

step.

Suppose that the Q quadrants of a finite quadtree structure are separated into y dis-

joint sets. Then, using the symmetric y-color block SSOR ordering, we would sweep the

quadrants in the order CI, C2, ', Cr, C Cy- 1, -, C1, where Ci is the set of quadrants

having color i. Because quadrants rather than nodes are colored, a node can be connected

to other nodes having the same color. Thus, the forward and backward SOR sweeps may

differ for a color Ci, i = 1, 2, .'., y. During an SOR sweep, unknowns lying on quadrant

boundaries are updated as many times as the number of quadrants containing them.

2.3. Coloring Finite Quadtree Structures

As noted, computation using the PCG method with either the EBE or SSOR precon-

ditioners will be performed in parallel on noncontiguous terminal quadrants of finite quad-

tree structures. Like the nodal coloring problem referred to in Section 2.2.2, determining

noncontiguous elements for arbitrary meshes is equivalent to coloring the vertices of the

dual to the planar graph corresponding to the elements of the mesh so that no two vertices
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have the same color. This is an NP-hard problem [23]. Coloring is greatly simplified by

* taking advantage of the regular quadtree structure. Thus, a small number of elements

associated with each quadrant will have the same color.

Naturally, coloring procedures that use the fewest colors will increase data granularity

and reduce the cost of process synchronization. At the same time, the cost of the coloring

algorithm should not be the dominant computational cost. With these views in mind, we

present eight-color and six-color procedures having linear time complexity. Emphasis will

be on the six-color algorithm due to its superior performance.

2.3.1. An Eight-Color Algorithm

Four colors are necessary and sufficient to color a uniform quadtree having all leaf

nodes at the same tree level. All that is needed is a simple breadth-first traversal of the

tree with assignment of colors numbered 1, .2, 3, 4 to the four leaf nodes having a com-

(mon parent. Of course, the finite quadtree structure is not generally uniform; however, the

one-level difference restriction across quadrant edges (cf. Section 2.1) implies that at most

quadrants at three tree levels can intersect at a vertex. Hence, it would be possible to

color the tree with twelve colors in three groups of four, e.g., numbered 1 to 4, 5 to 8, and

9 to 12, alternating each set at successive levels of the tree. We consider the possibility of

reducing the number of colors to eight by using two sets of four colors alternating through

tree levels. Assuming that the orientation of the colors remains the same throughout the

process, this strategy fails for the four case, shown in Figure 2 where quadrants having a

two-level difference intersect at a common vertex. With the orientation of the colors

shown in Figure 2, a simple switch of the colors 5, 6, 7, and 8 to 1, 2, 3, and 4, respec-

tively, at the point where the compromise occurred remedies this difficulty. An example

of this successful eight-color procedure is shown in Figure 3.

C
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Figure 2. Four possible failures of an eight-color procedure that-alternates two
groups of four colors through successive tree levels.
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Figure 3. A successful coloring of a quadtree with eight colors.
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2.3.2. A Six.Color Algorithm

It is possible to color the quadtree using six colors by performing a "column-order

traversal." Towards defining this procedure, let us create a binary directed graph called a

"quasi-binary tree" from the finite quadtree by using the following recursive assertive

algorithm.

i. The root of the quadtree corresponds to the root of the quasi-binary tree.

ii. Every terminal quadrant is associated with a node in the quasi-binary tree; however,

in general, not every quasi-binary tree node corresponds to a quadrant.

iii. In the planar representation of the quadtree, nodes across a common horizontal edge

are connected in the quasi-binary tree.

iv. When a quadrant is divided, its parent node in the quasi-binary tree becomes the root

of a subtree.

Planar representations of simple quadtrees and their quasi-binary tree representations

are illustrated in Figure 4. The leftmost quadtree illustrates root-node and offspring con-

struction of the quasi-binary tree. Connection of nodes across horizontal edges is shown

with and without quadrant division in all three illustrations. Subtree definitions according

to assertion (iv) are shown in the center and rightmost quadtrees.

From Figure 4 we see that column-order traversal of a finite quadtree is the depth-

first traversal of its associated quasi-binary tree. Let us define six colors divided into three

sets a, b, and c of two disjoint colors that alternate through the columns in a column-

order traversal of the quadtree. Whenever left and right quasi-binary tree branches merge,

column-order traversal continues using the color set associated with the left branch. Two

of the three color streams, say a and b, are passed to a node of the quasi-binary tree. At

each branching, the color stream a and the third color stream c are passed to the left

(offspring while the streams a and b in reverse order are passed to the right offspring. A



-15-

Figure 4. Planar representations of three quadtrees and their associated quasi-
binary trees.

procedure colorjpropagate (root: node; a, b, c: color stream);

begin
If not ((root = nil) or (root colored)) then

begin
Color root using an alternating color from set a;
colorjropagate (left child, a, c, b);
colorjropagate (right.child, b, a, c)

end
end;

Figure 5. Color propagation through the quasi-binary tee for the six-color algo-
rithm.

recursive color propagation procedure is described in a pseudo-Pascal language in Figure

5. Assuming that color stream a contains colors I and 2, color stream b contains colors 3

and 4, and color stream c contains colors 5 and 6, an example of a planar quadtree

colored with the six-color procedure is shown in Figure 6.

/

(
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Figure 6. A quadtree colored with the sixr-color procedure of Figure 5.

2.4. Computational Examples

Solutions of two elliptic systems using PCG iteration with the EBE and SSOR

(preconditioners and the six- and eight-color algorithms were calculated on a 16-processor

Sequent Balance 21000 shared-memory parallel computer. Parallelism is supported

through the use of a parallel programming library that permits the creation of parallel

processes and enforces synchronization and communication using barriers and hardware

locks. Parallel speed up is used as a performance measure.

Example 1. Consider Poisson's equation

uXX +u =Y f (X'y), (;Cy ) MX 2+y2< 1, (2.10a)

with homogeneous Dirichlet boundary conditions applied on the boundary of the unit cir-

cle and the function f (xy) defined such that the exact solution of (2.10a) is

u (xy) = e 7 sinr sinny. (2.10b)

A mesh having 2594 elements, 1346 nodes, and 1099 quadrants was generated. The

number of elements per quadrant ranged from 2 to 6. The scalar parameter e used in the

C.- EBE preconditioner was chosen as 0.3 and 3 SSOR iterations were performed per PCG



17-

step. Parallel speed up for each preconditioner and coloring scheme is shown in Figure 7.
Speed up using the EBE preconditioning is never worse than 73 percent of ideal for the

six-color procedure and 70 percent of ideal for the eight-color procedure. Corresponding

speed ups for the SSOR preconditioning are S6 and 76 percent of ideal for the six- and

eight-color procedures, respectively. Tune to calculate solutions of equal accuracy was
generally lower with the SSOR preconditioning than with the EBE preconditioning. For

example, a solution with 15 processors using the six-color SSOR algorithm used three

times less time than the comparale EBE solution. The six-color SSOR procedure also

indicates a better scalability to systems having larger numbers of processors.

m Ideal " Ideal
0 6 Colors * 6 Colors
88 Colors 88 Colors

o 
0

0~

0 5 10 15 0 5 15Number of Processors Number of Processors

Figure 7. Parallel speed up for Example 1 using the EBE preconditioning (left)
and the SSOR preconditioniag (right).

Example 2. Consider a plane stress problem satisfying the equations [24]

whEPuf(x,y), (x,)e (2.11a)where
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[a/ax 0 1
/c= a/a, E 4  0 V2-VI](2.11b)

a/4 a/ax] - -  0 "
Equation (2.11a) expresses the equilibrium of an elastic continuum having unit Young's

modulus and Poisson's ratio v. The vector u(x,y) = [u1(x,y),u 2(x,y)] is the displace-

ment of a material point at coordinates (x,,y) and f(xy) is a body force. The domain Q

and the mesh generated by the finite quadtree procedure are shown in Figure 8. Com-

ponents of the two-dimensional stress tensor satisfy

[TX, Cy, X ]T = EPu. (2.1 lc)

Boundary conditions are shown symbolically in the upper portion of Figure 8. Thus,

the circle, quarter circle and upper boundary are traction free; the stress Q = 0.5 on the

right boundary; and symmetry conditions apply on the lower and left boundaries. The

body force f = [0.2, Of and v = 0.25. The mesh shown in the lower portion of Figure 8

* t- has 994 elements, 557 nodes, and 472 quadrants. The EBE parameter e was chosen as

0.25 and 3 SSOR iterations per PCG step were used.

Parallel speed ups for the EBE and SSOR preconditioners and for each coloring algo-

rithm are shown in Figure 9. Speed up using the EBE preconditioning is greater than 68

percent of ideal for the six-color procedure and 62 percent of ideal for the eight-color pro-

cedure. Corresponding speed ups for the SSOR preconditioning are 76 and 71 percent of

ideal for the six- and eight-color procedures, respectively.

3. Hyperbolic Problems

Consider the solution of a system of two-dimensional conservation laws in in vari-

ables on a rectangular domain having the form

ut + &x (Xy ,t ,u) + gy(X~y,t,u) = 0, (X )E 0, t > 0, (3. 1 a)
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SS

0.Q

Figure 8. Geometry (top) and mesh (bottom) for Example 2.

-subject to the initial conditions

u(xY,O) = u0(xy), (x~y)e fluai, (3. 1b)

and appropriate well-posed boundary conditions.

Arney et al. [1, 251 developed an adaptive hr-refinement procedure for solving (3.1)

( that combined motion of a coarse "base" mesh with recursive local mesh refinement.
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m Ideal Ideal .
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Figure 9. Parallel speed up for Example 2 using the EBE preconditioning (left)

and the SSOR preconditioning (right).

Problems were solved on a sequence of base-mesh time slices of duration At,

n -- 0, 1, .... The discrete solution on a time step from, e.g., t,. to tn+l = tn + Atn began
C with base-mesh motion followed by a finite difference solution and generation of

refinement indicators at t,+, . Those cells where the refinement indicator failed to satisfy a

prescribed local error tolerance were identified and grouped into rectangular clusters.

After ensuring that clusters had an adequate percentage of high-error cells and subse-

quently enlarging the rectangular clusters by a one-element buffer to provide a transition

between high- and low-error regions, cells of the base mesh were bisected in space and

time; thus, creating finer meshes associated with each cluster. Problems on the finer

meshes were solved and the refinement procedure was repeated until the refinement indica-

tor satisfied the prescribed local error per unit stcp criteria. All space-time cells of finer

meshes were properly nested within those of coarser grids which simplified interpolation

problems at mesh interfaces. After finding an acceptable solution on the base mesh, a new

base-mesh time step At, was selected and the integration continued. The mesh motion
and local mesh refinement procedures were explicit and independent of each other as well

as of the solution technique and motion and refinement indicators. Efficiency suggested

renmntidiatr a ,,.Thsecll.hee.h..fneet.ndcto.aiedt.stsf.
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the use of a tree structure to manage the data associated with the refinement process.

Nodes of the tree corresponded to meshes at each refinement level for the current base-

mesh time step. The base mesh was the root node of the tree and finer grids were

regarded as offspring of coarser ones.

Arney and Flaherty [1, 4] used MacCormack's finite difference scheme [26] with

Davis's artificial viscosity model [27] to obtain discrete solutions on each mesh. This has

been replaced by the related Richtmyer two-step version of the Lax-Wendroff method

[28], which we describe on a stationary mesh for a one-dimensional problem having no y

dependence. Introduce a mesh on 0 having spacing Axj =xj+l - xj and let the discrete

approximation of u(xj,:) be denoted as Uj^. Using the Richtmyer two-step procedure, we

predict a solution at the center of the cell (xj,xj+i) x (tn,tn+) using the Lax-Friedrichs

scheme

U+ (U+ 1 " Ujn) _ n (f - ).(3.2a)

•j+ 2Axj j(.a

This provisional solution is corrected using the leap frog scheme

uA+4 = t + f - (3.2b)Ar*+-Ax .iiI"~ (f7 -t ~.j -J-1

The motion and refinement schemes are not limited to either the MacCormack or the

Richtmyer two-step methods and their selection was based on a desire for generality rather

than for optimal performance on a specific application.

Arney et al. [1, 25] used estimates of the local discretization error, obtained by

Richardson's extrapolation on a space-time mesh having half the spacing of the current

mesh, as a refinement indicator. Solutions generated on the finer, mesh as part of the error

estimation process could subsequently be used as a fine-mesh solution when refinement

was necessary. Initial and boundary data for refined meshes was determined by bilinear

interpolation from acceptable solutions on the finest available meshes.
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S - 3.1. Parallel Solution Strategies

Because of the global effects introduced by the migration of computational cells, we

postpone a treatment of mesh motion and herein appraise the suitability of Arney et al.'s

[1, 25] h-refinement scheme for parallel computation on a p-processor shared-memory

MIMD computer. Two possible parallel computation strategies immediately come to

mind: (i) depth-first traversal of the tree of grids with each grid being processed in parallel

and (ii) parallel processing of solutions on grids at the same tree level. Using depth-first

traversal, a static domain decomposition of each grid into p subregions is performed and a

processor is assigned to each subregion. With the second alternative, the p processors are

distributed among the grids at a level. The processors that are assigned to a grid are

released and reassigned elsewhere when refinement of a particular grid terminates. Thus,

with this strategy, parallelism occurs both within a grid and across the breadth of the tree.

In either case, the parallel solution process proceeds from one base-mesh time step to the

( next.

Serial depth-first traversal of the tree leads to a highly structured algorithm that has a

straight-forward design because the same procedure is applied to all grids. Balancing pro-

cessor loading on rectangular grids would be nearly perfect with an explicit finite

difference scheme such as (3.2). Balancing loads on geometrically complex regions would

be more difficult, but still would only require a static decomposition of a grid into p sub-

domains each having nearly the same number of computational cells. Load imbalance

occurs even with rectangular grids due to the differences in the time required to compute

initial data. Other than at t = 0, initial data is determined by interpolating solutions on the

finest grid at the end of the previous base-mesh time step. Traversal of the tree structure

is needed to determine the correct solution points for the interpolation. Such a traversal

could take different times in different regions due to v: ations in tree depth. Addition-

ally, the interpolation is more or less complex depending on whether solution points do

not or do coincide. We will offer additional comments on this issue in Section 3.3.
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The serial depth-first traversal procedure would become inefficient when p exceeds

the number of elements in a grid. This possibility can be reduced by refining by more

than a binary factor;, thus, maintaining a shallow tree of finer grids. Lowering the

efficiency of clusters, thereby including a greater percentage of low-error cells, will also

increase grid size but diminish optimal grid usage. With resolution, we would expect this

serial traversal procedure to be also viable on data-parallel computers.

The parallel tree traversal procedure requires complex dynamic scheduling procedures

to assign processors to grids. As discussed in Section 3.3, this may potentially be done by

estimating the work remaining to reduce errors to prescribed tolerances on all subgrids at a

given tree level and assigning processors accordingly. Were such a heuristic load balanc-

ing technique successful, we would not expect the parallel tree traversal procedure to

degrade in efficiency when the number of elements on a grid is 0 (p).

- - l3.2. A Computational Example

Let us exhibit the results of a computational experiment applying the serial depth-first

procedure to an example. Simplifying assumptions listed below have been incorporated

into the algorithm.

i. Each grid is statically decomposed into p subgrids having nearly the same number of

computational cells. A one-element overlap is included at the boundaries between

adjacent pairs of subdomains so that processors can proceed asynchronously within

their respective subdomains. No attempt is made to balance processor loading based

on the complexity of the initial data at the beginning of a base-mesh time step.

ii. Unike the serial procedure [1], all grids are rectangular with edges parallel to the

coordinate axes.

iii. Grids spawned by refinement must remain within the boundaries of their parent

K subgrid.
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r A computer code based on this algorithm has been implemented on the 16-processor

Sequent Balance 21000 computer and applied to the following problem.

Example 3. Consider the linear scalar hyperbolic differential equation

u,+u+ uy =0, 0.2-x51.2, 0<y51, t>0, (3.3a)

with initial and Dirichlet boundary data specified so that the exact solution is

0.8, if (y-0.25 t) < -4(x-t) + 1.2
u(xyt) 0, if (y--0.25 t) >-4(x-t) + 1.6 (3.3b)

L-8(x-t) - 2(y-0.25t) + 3.2, otherwise.

Equation (3.3b) is an oblique ramp-like wave front that moves at an angle of 14 degrees

across the domain as time progresses.

Refinement was controlled by using an approximation of the local discretization error

in the L 1 norm as a refinement indicator. Exact errors for this scalar problem were also

(measured in L as

lie (,,t)ll IQu (x,y,t) - U (x ,y,t)I dxdy, (3.4)

where U (xy,t) is a piecewise constant representation of the discrete solution and

Qu (x,y ,t) is a projection onto the space of piecewise constant functions obtained by using

values at cell centers.

We solved this problem on 0:< t :5 4.2 using local refinement restricted to 0, 1, and 2

tree levels. The term "0 refinement levels" implies no adaptivity. A 20 x20 base mesh,

an initial time step of 0.032, and a refinement tolerance of 0.002 was used in all cases.

Parallel speed up for each strategy is shown in the left portion of Figure 10. As an indi-

cation of the maximum speed up possible on a Balance 21000 computer, we also solved a

problem with no load imbalance due to initial conditions on a 6 x 360360 grid. Thus, the

only degradation from ideal speed up would be due to bus contention. Speed up for this

"embarrassingly parallel" problem is shown in the right portion of Figure 10. These
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results indicate that it is possible to obtain approximately 90 percent of ideal speed up for

our procedure on a Balance 21000 computer. We would like to regard this as the upper

limit to the palUel performance of the current version of our adaptive algorithm.

m Ideal N Ideal

* O-Level * Maximal
" I-Level

o 2-Level

In IL,

o 0

0 5 10 15 0 5 10 15
Number of Processors Number of Processors

Figure 10. Parallel speed up for Example 3 using refinement restricted to 0, 1,
and 2 tree levels (left, top to bottom) and for a perfectly balanced problem
(right).

Maximum speed ups shown in Figure 10 are greater than 86, 82, and 72 percent of

ideal for problems having 0, 1, and 2 levels of refinement, respectively. Speed ups rela-

tive to the maximum feasible speed up reported on the right of Figure 10 are, respectively,

96, 90, and 79 percent for 0, 1, and 2 refinement levels. Our adaptive procedures are

capable of achieving a high degree of parallelism; however, performance degrades as tree

depth increases due to the serial overhead incurred when managing a more complex data

structure.

Speed up is not an appropriate measure of the complexity required to solve a prob-
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lcm to a prescribed level of accuracy. Tradeoffs occur between the higher degree of

parallelism possible with a uniform mesh solution and the greater sequential efficiency of

an adaptive procedure. In order to gage the differential, we computed uniform mesh and

adaptive mesh solutions of Example 3 on various processor configurations and to varying

levels of accuracy. Computations on uniform meshes ranged from a 10 x 10 mesh to a

90x 90 mesh. All adaptive computations used a 20 x 20 base mesh and an unrestricted

number of refinement levels.

01

010-

" Non-adaptive

* Adaptive

10- 101

CPU Time

Figure 11. Global L1 error as a function of CPU time for Example 3 using
non-adaptive methods (upper set of curves) and adaptive h-refinement methods
(lower set of curves). Each computation was repeated using 1, 4, 8, and 15 pro-
cessors (right to left in each set of curves).

Results for the global L1 error as a function of effort (CPU time) are presented in

Figure 11 for computations performed on 1, 4, 8, and 15 processor systems. The upper

set of curves, displaying non-adaptive results, are much less efficient than the adaptive

solutions shown on the lower portion of the figure. Bus saturation due to the large
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volume of data has limited non-adaptive solutions to unacceptably low levels of accuracy.

Solutions obtained on systems having greater bus bandwidth would postpone this problem

and diminish the advantages of an adaptive approach; however, the difficulty would still

arise with increasing problem complexity.

3.3. Parallel Tree Traversal

We conclude this section with a brief discussion of parallel tree traversal procedures.

Consider a situation where q processors were used to obtain a solution on a grid at tree

level I - 1 and suppose that refinement indicators dictate the creation of L level I grids.

Further assume that (i) the prescribed local refinement tolerance at level I is r; (ii) the

areas of the level 1 grids G,,, are MIji , i = 1, 2, ... , L; (iii) error estimates Eti ,

i = 1, 2, ..., L, can be obtained for each grid from the level I - 1 refinement indicators;

and (iv) the finite difference solution is converging as the square of the local mesh spac-

" - aing. Quadratic convergence is established merely as an example and the approach easily

extends to other convergence rates.

In order to satisfy the prescribed accuracy criterion, the spatial domain GI i should be

refined by a factor of (E,,i/,C) 2. The time step on G,i must also be reduced by a factor of

El,ilr in order to satisfy the Courant condition. Hence, the expected work W,i to find an

acceptable solution on the region Gti is

w1j = Mui(fE1 (3.5)

The original q processors should be allocated so as to balance the time required to com-

plete the expected work on each of the L grids at level 1. Thus, q1, i = 1, 2, ... , L, pro-

cessors should be assigned to the level 1 grids so that

WI, I WV12 I' L
- I - q- = q. (3.6a,b)

q li b q2 qL

-Quality of load balancing by this approach will depend on the accuracy and robust-
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ness of the error estimate. Previous investigations [1, 25] revealed that error estimates

were generally better than 80 percent of the actual error for a wide range of mesh spacings

and problems. Equation (3.5) can be used to select refinement factors other than binary

and, indeed, to select different refinement levels for different meshes at a given tree level.

This" consideration combined with over-refinement to a tolerance somewhat less than the

prescribed tolerance should maintain a shallow tree depth and enhance parallelism at the

expense of grid optimality.

The procedures outlined by (3.5) and (3.6) can additionally be modified to balance

nonuniformities in the initial data at the beginning of base-mesh time steps for t > 0.

Thus, the work estimate (3.5) could be multiplied by a factor representing the work

needed to calculate initial data. The additional effort required to acquire the initial data,

assuming that such access is as complex as computing the solution, increases the expected

work during the first of E,ir/' fine time steps by (EtIj/')2. Hence, the revised estimated

Cwork is

i = Wl,iL 1  - i -. (3.7)

4. Discussion

We have described parallel finite element procedures for solving elliptic problems on

finite quadtree structured grids and parallel adaptive procedures for the explicit finite

difference solution of hyperbolic problems. Speed ups on a shared-memory computer are

used to demonstrate that a high degree of parallelism has been established in all cases.

Decay in spccd up after using approximately 8 of the 15 available processors on a 16-

processor Sequent Balance 21000 computer occurs due, for example, to loss of processor

synchronization, start-up latency, and large data granularity.

For elliptic problems, a six-color scheme for separating elements at the quadrant level
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of a finite quadtree structure has better speed up and scalability than an eight-color

scheme, which is expected due to the decreased need for process synchronization. The

number of quadrants within a color group may not be divisible by the number of proces-

sors, which may result in some processors being idle near the end of each task queue.

Similar losses of efficiency could result due to differences in the number of elements per

quadrant. Although the six-color procedure requires less communication, these reasons

may account for the small difference in speed up between the six- and eight-color schemes

on Example 2.

Examples 1 and 2 indicate a higher speed up for the SSOR preconditioning than for

the EBE preconditioning. This may be due to a need to use some global information in

the preconditioner [29]. Further improvements of the EBE preconditioning are likely by

adjusting the parameter E in (2.7). In any event, performance of the EBE preconditioner

with e > 0 is better than the diagonal scaling preconditioner that results when e = 0.

Parallel speed up of our adaptive h-refinement scheme for hyperbolic systems

degrades as tree depth increases. Nevertheless, adaptive tree data structures utilize less

data than uniform structures which lowers contention on a bus-based multi-processor.

This enabled solutions of Example 3 to be calculated to much greater accuracy than with

uniform structures having a higher degree of parallelism.

Our schemes for both elliptic and hyperbolic systems are far from being complete

and several computational and theoretical issues are yet to be resolved. Currently,

hierarchical bases and p- and hp-refinement techniques are being added to both systems.

Hierarchical bases are, of course, well established for elliptic systems [3]. Their use for

hyperbolic problems can be. done by an approach of Cockburn and Shu [30]. The EBE

preconditioning should continue to exhibit a high degree of parallelism with the higher-

order bases; however, load balancing of adaptive hp-refinement schemes will present quite

( a challenge.
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The present Richardson's extrapolation-based error estimation technique used to fur-

nish local error estimates of solutions to hyperbolic systems is expensive and will be

replaced by a technique based on p-refinement. Computation at the beginning of each

base-mesh time step need not return to the base mesh, but could begin on an adaptively

chosen mesh that utilizes known nonuniformities in the solution discovered during the pre-

vious base-mesh time step. Scheduling processors to balance loads in this case is also far

from clear.

Finally, both adaptive procedures for elliptic and hyperbolic systems will be

attempted on distributed memory computers.
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The Three R's of Engineering Analysis

and

Error Estimation and Adaptivity
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Abstract

Reason, Robustness and reliability must be the necessary

guidelines for practical computer based engineering analysis. With

the increasing use of 'black box' computer codes incorporating

finite element approximations it is essential that at least the

second two attributes be given considerable attention by code

designers. Here the role of error estimation and automatic

adaptivity is of particular importance and the paper reviews the

state of the art and possibilities now available.

1. The three R's

The widespread availability of computational tools, based on

finite elements and other forms of approximation, opens almost

unlinited possibilities for the progress of engineering,

Previously insoluble problems can today be treated on a routine

basis and, at least in principle, this should lead to immense
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improvement in design. However, many dangers are apparent as, with

the 'black box' approach, facilities are placed within reach of a

C wide community often ldcking the necessary background knowledge.

Just as the use of 'sharp tools' presents a danger to children,

so powerful codes may prove disastrous when applied without

suitable education and safeguards.

In preparing our children to face the world their education is

based on the well known three R's foundations of Reading, wRiting

and aRithmetic. In a similar way we believe that the development

and use of analysis codes should be guided by another set of R's

-- i.e Reason, Robustness and Reliability. The first should be in

*the main addressed to the user. The remaining are firmly in the

hands of code developers.

The conference at which this paper was initially presented

addressed all of the above but in the present context we feel it

is of importance to clarify the terms.

1.1 Reason, or alternatively knowledge and intelligence is,

without doubt, the most important of the three items. It must

guide the decisions concerning the validity of mathematical method

used in simulating the physical problem of interest and those of

assessing the results achieved. Here, despite many developments of

'knowledge based systems' and 'artificial intelligence' the

professional education and wisdom of the engineer can not be

superseded. This indeed is fortunate as otherwise his role could

2



almost be eliminated after the formulation of a conceptual design.

The questions which arise here and which must be answered

without ambiguity are numerous. The objectives of the analysis and

the nature of answers sought must first be clearly visualized.

Sometimes these may be found in appropriate codes of practice of

the profession -- but more frequently their ambiguity makes it

necessary for the engineers to define and justify his own aims and

this definition is not trivial. With objectives defined the

process of modeling begins with such questions as: Is this a

problem of solid or fluid mechanics? Will a linear elastic

solution be sufficient or do plastic effects intervene? etc. Again

the answers are not at all obvious. Such problems as those posed

by metal forming where deformations are very large may be modeled

either as solids or fluids. Indeed the latter approach is

t+ ( frequently advantageous.

Even when linear elasticity is chosen as a model many pitfalls

are present if the knowledge of the background is not possessed by

the user. Professor Babuska and Bathe have, elsewhere in this

issue shown many examples of difficulties encountered in deciding

how the elastic model is to be used. Fig.l to 3 show some further

situation in which difficulties may occur to the 'uninitiated'.

(FIGURE 1)

In the first (Fig. 1) the problem is that of determining the

foundation displacements under a weight at a building. As the

building is long a two dimensional plane strain idealization is

considered and, as finite elements are to be used in the analysis
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the user experiments with different depths of the foundation

included in the analysis. The fact that the actual displacements

(will be infinite in the idealization chosen escapes his attention!

C Of course the problem is not meaningless if only relative

displacements between different parts of the foundation are of

interest)

(FIGURE 2)

In Fig.2 a plate bending problem is encountered; here depending

on the relative thickness/span ratio either thin (Kirchhoff) or

thick (Reissner-Mindlin) plate theories may be relevant. It is now

well established that the former can give very different results

from the latter in what usually have been considered thin cases

when so called 'simple support' conditions are specified (1](2].

However the simple support found in practice ( and shown in the

figure) differs much from that assumed in plate theory.(
The differences in a thick plate situation (Fig. 2a) are such

that three dimensional effects can add considerably to

deformations and cause stresses not existing in plate theory.

Further the determination of plate 'spans' is by no means precise.

Although these effects may be insignificant when very thin plates

are analyzed for these unless deflections are very small, membrane

effects will again mask predictions of linear plate theory. The

user has to be sufficiently educated to decide on the limitations.

(FIGURE 3)

'The last example Fig.3 shows a problem of a shaft subject to

torsion which could (wrongly) be used to prove non uniqueness of

the elastic solutions. Here a rounded keyway or notch is examined
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and stresses computed with a very precise finite element analysis.

Irrespective of the size of the notch the analysis will show

almost identical maximum. stresses and these will persist as the

size of the notch tends to zero. These stresses are very different

from those found in the same shaft with no notch! Are the final

results nonunique? Microscopic examination of any surface shows up

many imperfections are therefore notched results may be more

realistic!

Indeed if a sharp notch is considered stresses near its tip

will always be infinite! Are infinite stresses therefore

always present in the limit?

The answer here lies, we believe, in 'size' limitations beyond

which continuum theories cease to apply and this is tacitly

|( ( assumed by skilled engineers. Can we guarantee that the user of

codes has the necessary skills?

Clearly in most of the problems of modeling and interpretation

considerable knowledge is required of the user and computer

knowledge bases can only provide minimum guidance. Fortunately the

case of the remaining two R's is more likely yield to the design

of computer codes and here we expect greater strides in the

future.

1.2 Robustness is a word which has recently been introduced into

the numerical analysis vocabulary without perhaps a proper

c5
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definition. In the present context it is simply the requirement

that computational algorithm used in codes should work in all( cases falling within their class of applicability. Examples of

lack of robustness abound in finite element literature with

elements ')urporting to solve a particular problem, and shown to do

so in n - demonstration cases, failing in the n+l application

(which was not expressly excluded in their design). Here we shall

not quote examples which could prove embarrassing but shall state

simply that robustness can be assured by the code developers by

subjecting the elements to a properly conceived patch test [3-5].

The same can alternatively be assured, albeit with more

difficulty, if at the stage of element conception the mathematical

reasoning of the Babuska-Brezzi test is applied [6,7].

Though lack of robustness may not be detected at the early

stages of algorithm development by its well intentioned

originators, the well know McPherson law will ensure that, if at

all possible, it will fail at the most inconvenient moment.

Clearly robustness of all algorithms should be assured as far

as possible by the codes so that the user, who justifiably need

not be an expert in numerical analysis, should not be disappointed.

1.3 Reliability is the last of the three R's and most of this

paper will be devoted to this aspect. With robustness already

taken care of the remaining causes of results on which the user

can not rely are (i) programming bugs (ii) errors due to roundoff
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(iii) errors of discretization. The first two though impossible to

eliminate entirely are well recognized and for many years have

been tackled by code designers introducing appropriate checks.

However the discretization error, which is always present in

numerical approximation process, ha -'t considered beyond the

scope of standard coding and its conL. . eft to the user. Here an

obvious difficulty is encountered by the unskilled user with lack

of numerical analysis knowledge - but fortunately now the

situation can be remedied by the procedure of Error Estimation

informing the user of errors present in the analysis executed and

Adaptive Refinement giving, hopefully automatically, results with

user specified accuracy. In the following sections we shall

discuss the state of the art of these in some detail.

2. Error Estimation and Ada2tivity -- What is now available!

C 2.1 The error and its assessment

The errors in any numerical discretization process can only be

assessed 'a posteriori' i.e after a numerical solution has been

carried out ( though some qualitative guidance regarding, say, the

mesh size to be adopted can be gained from so called 'a priori'

estimates) Much research has been devoted to the subject since the

mid seventies through the pioneering work of Babuska and others

(8-20]. Recently error estimating procedures have been made

considerably easier at least for linear elliptic problems through

the work of Zienkiewicz, Zhu and others [21-31,2]. The state of

the art today is such that for many problems of practical interest
the estimate of errors can be made after the completion of

7



I the solution at a fraction of its cost.

F We are somewhat surprised that it has taken a very considerable

time for code developers to incorporate such procedures which

would at least shown the user the accuracy he has achieved and the

rpliability of the answers.

Indeed it is now possible to devise a post processor which can

take results of an analysis carried out on any existing code and

supply the error information. Such code called TAP-2D (Test And

Predict) is now commercially available.

We shall illustrate the Z2  (Zienkiewicz and Zhu) error

estimating and adaptive mesh design processes on a general

elliptic problem of the type

fT

SSTDSu = f (1)

with appropriate boundary conditions incorporated.

Here S is a general differential operator which in the particular

case of elasticity defines strains as

£ = SU (2a)

and stresses as

a = DSu (2b)

If a finite element solution using standard procedures [32] is

obtained with a trial function expansion of the form

8-I_ _ _ _ _ _ _ _ __ __ _



uh = NU (3)

( then local error is

Lh

e =u - uh  (4)

This has to be specified in some norm for simple control

purposes and generally the so called energy norm is used. Here we

define this as

Bell = ( f (s)TD (Se) dQ ) 1/2 (5a)

or perhaps more understandably as

lell = ( T DIe dl) 1/2 (5b)

where

h h

e =DSu -DSu = £ - 01 (5c)

is the error in stresses for an elastic problem

Remark In other elliptic problems of frequent usage

precisely the same norm can be, of course, applied. For

instance in a heat conduction problem the variable change

S k V, D - k (conductivity)

U -- T, (temperature) and a - g (heat flux)

will accomplish the modifications needed.

The evaluation of error in energy norm by above expression is

(Q-
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still of course impossible qs knowledge of an exact solution is

lacking. However if by some procedure values of, say, S which are
h( approximately an order of h more accurate than those of o* can be

found, then the integrals of equation (5b) could be determined by

putting

m (6)

and an estimate of error obtained.

In the procedure discussed here such approximation are obtained

by using a smooth representation of o£

0 -0
a = NT' (7)

and ensuring that the projections of cr and _h coincide i.e that

T( ah
- )dQ =0 (8)

Different forms of such projection have of course been

implemented for a long time in many codes - one of the most

commonly used being that of nodal averaging. Other possibilities

are open using for instance weighted averaging or more accurately

putting

P= (9)

This projection is most effective [33] - and can be

economically achieved by a simple iteration process (21,32]. With

its use effectivity indices defined as

10



8=predicted error (10)
actual error

are in the range of 0.8-1.1 for most practical situations and

( estimates are reliable. Perhaps surprisingly, other forms of

smoothing give comparable results (2).

We refer the reader to references (21,22,27] for a wide range

of elements and problem in which such effectivity was studied. In

this pap-r we shall only show this in some -lected examples for

which adaptive refinement is studied.

Other methods of obtaining & can of course be included in the

general methodology. For instance a stress smoothing using

extrapolation from optimal sampling points in elements (34] has

proved very effective in some problem using isoparametric elements

(35].

The procedure is very effective and cheap for finite element up

to the f-ider p=2 but other possibilities of achieving the same end

exis. aibclt involving some additional cost. Here in particular we

should mention the technique based on residual projection used

effectively by Oden, Demkowicz et al (19] and recent experiments

involving the properties of superconvergence (31). Such methods

are probably necessary for p > 2 but as very many current elements

are those± in the lower range the estimator here outlined can be

used with some confidence.

The use -;f energy norm estimators is particularly convenient of

some overall percentage error

11



= IIe~ II (1

! (
is desired for comparative purpose and to guide the analysis,

However from practical viewpoint more local estimates are often

needed. Indeed these are available through the same analysis which

computes energy norm errors element by element. Such local

estimators can serve well as guides to local stress error

magnitudes and again here show a surprisingly high effectivity

[21).

The preceeding has, we believe, shown that in the error

estimate field a state of art has been reached where its neglect

can not be justified.

2.2 Prediction of necessary h-refinement for a sp2ecified accuracy.

The user will generally require that the overall accuracy n is

at or below some specified value j. It is unlikely that he will

ever be satisfied with the results of a single analysis on a mesh

designed 'using previously acquired knowledge' or experience. He

will either overshoot the mark - and using overrefinement incur

unnecessary analysis cost - or more frequently will find results

which do not satisfy his initially specified criterion.

Two choice are then open to achieve desired results. He can

either increase the order of trial functions p in the elements

used initially (following so called p-refinement) or reduce the

12



element size h used (h-refinement). Indeed he may try to vary both

simultaneously with so -called h-p process refinement. Much

( attention has been given to all of above but in the present

practical sense he will generally have only a limited repertoire

of possibilities open in a given code possessing a fixed element

library. For this reasons in the present section we shall confine

our attention to the h-refinement process alone and will show that

after the initial analysis it is possible to predict an element

size distribution needed for a specified accuracy. Indeed if such

a size distribution is achieved by suitable remeshing (which we

will show later) frequently a single reanalysis will suffice. An

example of such an automatic process is shown in Fig. 4 where a

single re-analysis allowed the goal of 5% accuracy to be reached

from an initial analysis with an error about 17 per cent.

(FIGURE 4)

* ( The mesh size prediction process is simple and aims towards the

achievement of an optimal mesh for which the error in energy norm

is equal in each element.

Thus if the actual error on a given mesh on which the original

analysis was carried out is such that

> (12)

and we know IelIm , the energy norm of error associated with each

element m, (m=1 to M), we shall first estimate for each of the

existing elements the ratio

(.1
13



= (13)
m II e I permissible

where' the permissible element error is given approximately

(assuming an equal error distribution) as

11h2 + ell12)/2 / r (14)
pelermissible +

observing here that only the square of the norm is additive.

Now we make use of the well know fact that [36,37)

Ilell oc hmin(Ap) (15)

where X is the 'strength' of singularities present, together with

the fact that for an optimal mesh dependence on A is eliminated.

Though the mesh is not yet 'optimal' we can (with some optimism)

predict a new element size required over the area of each present

( element m. Thus in .each such subdomain we shall require

h m  hm i/p(1a
new existing

However when considering the elements adjacent to the

singularities it is desirable to predict the mesh size by

hm m (!/bnew = hexisting (16b)

Practice has shown that this prediction is remarkably efficient

and the code TAP-2D includes this simple feature which immediately

gives the necessary guidance to the user for the refinement

process.

14



Identical prediction is of course applicable to the problems of

multiple loading. Now on the original mesh each of the loads load

i i (i=l,2,...,n) is applied, errors estimated and predicted mesh

sizes hem obtained by equation (16). The smallest predicted
new( i)

size at any location, i.e

m = min(h m hm hm ,hmhnew (hnew(l), new(2),.. new(i),.. new(n))  (17)

will be used to generate the final mesh and of course we would

expect that this mesh would exceed slightly the accuracy required

for each individual load.

2.3 Currently available p2rocedures of automatic mesh

To achieve the required mesh size distribution two main

direction can be followed in principle; that of mesh enrichment in

( which the original mesh is retained and that of mesh _reg2eneration

in which either the whole of the mesh is redesigned or only the

portion in which C>l.

(FIGURE 5)

Mesh enrichment, which generally precludes the possibility of

de-refining i.e using a coarser mesh when C<l, is shown in Fig. 5.

Here immediately we notice the incompatibilities which arise at

element interfaces which generally involve the insertion of

suitable, if complex, constrains and a special data structure

[38,18]. For this reason the only practical enrichment procedure

so far produced have involved successive halving of subdivision

with many intermediate steps necessary to achieve final accura y.
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It appears that probably the partial or complete mesh

regeneration processes are preferable as it is possible to achieve

in a single operation the desired element size distribution

predicted on the basis of equation 16. This is certainly the case

where triangular subdivisions are used as those can be constructed

using an advancing front technique to follow any specified size

distributions (39]. Similar construction can of course be extended

to three dimension and used to construct tetrahedral meshes at

prescribed density [40]. Of course triangles and tetrahedrals can

also be constructed using techniques developed by Shephard et

al[41,42] and similar objective achieved. However with such

methods it appears more difficult to follow the precise mesh

density distributions.

Defining adaptivity as the process of adjustment to meet
spe22ified requirements followinq the examination of the present

conditions we have shown in Fig.4 a typical procedure of

refinement in which only a single step of adjustrment was

necessary. Later we shalL show some further examples of such a

fully automatic process derived by using a code MAD-2D (Mesh

Adaptive Design) which follows the use of the previous post

processor TAP-2D. Of course now some generality is lost as error

esti-mates and mesh size prediction is applicable to almost all

element shapes and types while the automatic mesh generation

process is at the moment restricted to triangular (or tetrahedral)

shapes. Indeed one of the unsolved problem is that of devising on

automatic process of generating regular quadrilaterals, preferably

on structured meshes, in which size distribution is prescribed.
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Some generators based on various mapping procedure are being now

investigated.One possibility is illustrated in Fig.6 in which

( triangular (or tetrahedral) meshes are generated first by

procedures previously discussed and then subdivided into three

quadrilaterals (or four hexahedral) shapes. However here the

element shapes so derived are not to everybody's liking.

(FIGURE 6)

2.4 Some further exam2les of automatic adaptivity. Multiple loads,
~~Therml poblems.

In the proceeding we have illustrated how a fully automatic

procedure for achieving error estimators, mesh size prediction and

results of a specified accuracy can be obtained today. Fig.4 as

well as numerous examples in references [21-23,25-28,30] show

possible application and their effectivity in various problems at

linear and nonlinear analysis. In this section we show two

additional examples illustrating the application of the procedure

to slightly different situation.

(FIGURE 7)

The first shows a typical adaptive process in plane stress

elastic analysis for multiple loads Fig.7. Here the application of

the error analysis programs is made independently for each load

using the original mesh and the desired mesh sizes to obtain 5%

(with the use of quadratic elements) and 15% accuracy (with the

use of linear elements) in each load case are computed. Further a

single final mesh on which each load is again applied separately

is generated leading of course to higher accuracy then that

original specified but reducing the computational cost of

generating separate meshes and solving each load case

17



individually.

For comparison both types of solution are included in Fig. 7

with linear and quadratic elements.

(FIGURE 8)

The second example considers a problem of heat conduction and

- thermal' stresses in which first an adaptively refined mesh for

temperature solution is obtained following by a second thermal

stress solution. Quadratic elements are used in the analysis.The

prescribed accuracy of 5% has been achieved for both temperature

solution and thermal stress solution on refined mesh. Fig. 8.

3. Error estimation and adaLtivity -- What will be available

tomorrow.

So far we have discussed methodologies which can easily be

( adopted to fairly standard existing codes widely used in practice

without necessity for major restructuring. With such approaches

accuracies of 3-5% are easy to reach without excessive refinement.

For higher precision p- or h-p refinement processes are necessary

but here major changes of codes are needed and doubtless in the

future this option will be incorporated in many programs. The use

of local hierarchical p refinement firstly introduced in 1971 [43]

was successfully used by Peano, Szabo et al [44-47]. Recently Oden

et al [18-20] have shown how combination of such p-refinement with

h enrichment can result in a minimum number of parameters required

to reach a given accuracy (this is also reported elsewhere in this

issue).

C (FIGURE 9)
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The combination of h and p process can however be accomplished

with, better computational economy by use of a simple h-refinement

(- leading to say a 5% accuracy followed by a uniform increase of p

over the whole domain [29]. With the first refinement carried out

using p=2 it is found that an increase of p to 4 will generally

lead to energy norm accuracy better than 1%. A typical example is

illustrated in Fig. 9a. An improvement of this procedure uses a

higher order p to predict the mesh size for the h-refinement. Now

a better mesh and more rapid convergence will be obtained. (Fig.

9b)

In uniform p refinement error estimation is quite accurate and

easy to accomplish providing results for three values of p are

available. With the error given as

i ell = (iull - l i) =CN (18)

where N is the number of degrees of freedom, and C,a are

constants, three solutions with different valuas of p yield ilull, C

and a and therefore liell.

Of more importance is the extension of error estimation and

adaptivity to non-linear and transient problems. Much current

research is in progress in both areas. In Fig. 10 a highly

non-linear and transient problem of metal forming is illustrated

[28]. Here error estimation and mesh refinement follow precisely

the line used in section 2 but to allow for less frequent

refinement than that at each step two limits for - are used. An

upper value " which must not be exceeded and j set lower for which
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we aim when the upper value is exceeded.

(FIGURE 10)

A problem of considerable interest in current studies of

non-linear behavior is that of localization which occurs under

certain conditions of plastic behavior or fracture. In this area

again local refinement following error estimating procedures is of

great importance and the subject is currently under active

research. Fig. 11 P30] shows how such localization can be clearly

indicated by an h-refinement process.r

(FIGURE 11)

In the same Figure we show how the use of elongated elements

can produce same accuracy from fewer degrees of freedom in

localization which is essentially one dimensional.

(FIGURE 12)

This concept is of great importance in hyperbolic prol'.em of

fluid mechanics of compressible flow where indeed it was first

introduced (39-40]. Here shock localization and capturing can be

effectively performed using this device Fig. 12, however the error

measure used in such problem are different. It is probably that

the greatest strides in tomorrow's developments will indeed come

from this important area in which three dimensional mesh

generation and refinement were indeed first introduced Fig.13.

(FIGURE 13)
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Figure 1. A two dimensional half space modelling a foundation. How
big should depth d of the analysis region be to determine

rrealistically displacement of structure under load W ?

Figure 2. Thick and thin plate problems.
What is a simple support? How to deal with local 3D

support displacement? What are plate spans? Is it a plate -or a
membrane?

Figure 3. Rounded and sharp notches in a torsion bar.
How does the stress vary as notch size decreases to

zero? What size of surface imperfection can be ignored?

Figure 4. Plane strain problem of a dam under water load.
Automatic adaptive mesh generation to achieve 57. accuracy.

Figure S. Difficulties of mesh enrichment to specified element
size (without constrained data structure).

Figure 6. Quadrilaterals and hexahedrals (bricks) generated by
subdivision of triangles or tetrahedra.

Figure 7a. Adaptive analysis for two loads separate and combined
meshes aiming for 5% accuracy with quadratic element.

Figure 7b. Adaptive analysis for two loads separate and combined
meshes aiming for 15% accuracy with linear element.

Figure 8. Automatic adaptive analysis of heat conduction and
thermal stress (plane strain) problem to achieve 5% accuracy.
Quadratic triangular element.

Figure 9a. Procedure I in the h-p version analysis of short
cantilever beam with rigidly fixed side. Quadratic triangular
element is first used in h version to achieve 5% accuracy. p is
subsequently increased up to 4 to achieve 1%. accuracy.

(a). Original mesh. (b). h-refined mesh. (c). h and p
refined mesh. (d). Convergence of results with uniform refinement
and h-p adaptive procedure.

Figure 9b. Procedure 2 in the h-p version analysis of short
cantilever beam with rigidly fixed side. p refiriement used in
original mesh (a) achieving 11.8% accuracy at p=4. This allows
error in each element to be determined for p=3 (b). Final
convergence of results shown in (c).

Figure 10. Two stages of extrusion of metal through a tapered die.
(a). Material grid.
(b). Mesh before remeshing.
(c). Mesh after remeshing.

Figure 11. Compression of a uniform, ideally plastic specimen with
a central defect modelled as a circular opening.
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Figure 12. Directional mesh refinement. Flow past a circular
cylinder -- Mach 3. 3rd. refinement mesh 709 nodes (1348

( elements).

Figure 13. An adaptive three dimensional analysis of compressible
flow around an aircraft. Mesh of tetrahedral elements and contour
plots of pressure distribution.
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FIGURE 1. A TWO DIMENSIONAL HALF SPACE MODELLING A FOUNDATION.

HOW BIG SHOULD DEPTH d OF THE ANALYSIS REGION BE TO

DETERMINE REALISTICALLY DISPLACEMENT OF STRUCTURE

UNDER LOAD W'?
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FIGURE 2 THICK AND THIN PLATE PROBLEMS.

What is a simple support ?
How to deal with local 3D support
displacements
What are plate spans ?
Is it a plate or a membrane ?
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FIGURE 3 ROUNDED AND SHARP NOTCHES IN
A TORSION BAR

How does the stress vary as notch
size decreases to zero ?
What size of surface imperfection
can be ignored ?
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MESH 1 (728 D.O.F.) 0# 1.05 q16.5%

MESH 2 (1764 D.O.F.) 0%= 1.07 q4.86%/

FIGURE 4 PLANE STRAIN PROBLEM OF A DAM
UNDER WATER LOAD. AUTOMATIC ADAPTIV/E
MESH GENERATION TO AChIEVE 5% ACCURACY



Triangtes
CQuads J - Possibte

subdivision
indications

.( .Original mesh

FIGURE 5 DIFFICULTIES OF MESH ENRICHMENT TO
SPECIFIED ELEMENT SIZE
(WITHOUT CONSTRAINED DATA STRUCTURE)
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FIGURE 6 QUADRILATERALS AND HEXAHEDRALS
(BRICKS) GENERATED BY SUBDIVISION
OF TRIANGLES OR TETRAHEDRA
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I AIMING FOR 5% WITH QUADRATIC ELEMENT

B/ A

Original mesh (3 90 D.0. F.) Mesh refined for Load A only
Load A q=11.58% q=4.00% (10 16 D.0. F.)
Load B q=1 3.82%

Mesh refined for Load A and B Mesh refined for Load B only
Load A q=~3.56% (1322 D.O.F.) q= 4.020/ (1032 D.O.F.)
Load B q=3.60%
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AIMING FOR 15% WITH LINEAR ELEMENT

IN

Original mesh (115 D.0. F.) Mesh refined for Load A only
ILoad A fl=5.2l=62% (1063 D.O.F.)

K oad B q=51.78%

Mesh refined for Load A and B Mesh refined for Load B only
Qoad A q=1 4.71% (1998 O.O.F.) fl=15.27% (1280 0.0 F.)

Load B 9=14.16% 3
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roissons rario , v=u.J
Plane strain conditions

(a) (b) (c)
Number of degrees of fre 'edom

10 30 50 100 250 500 1000 2500 5000 10000 30000

-T

-0.2 50
-0.4- 6-node element -40

-06Uniform refinement -30
6-noe N20 _

-0.8 element. 1
- -1.0 AdaptiveP.5
= -1.2 h-refinementp=
0' -1.4

-1.6 9-node element .4-1.8p-rfinmen p3 Unif orm refinement2
-2.0

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Log N

Note :1% Accuracy reached with 1104 D.O.F.
(d)

FIGURE 9a PROCEDURE I IN THE h-p VERSION ANALYSIS OF SHORT CANTILEVER
BEAM WITH RIGIDLY FIXED SIDE . QUADRATIC TRIANGULAR ELEMENT IS

C FIRST USED IN hi VERSION TO ACHIEVE 5% ACCURACY . p IS SUBSEQUEI1
INCREASED UP TO 4 TO ACHIEVE 1% ACCURACY.
(a) Original mesh , (b) h Refined mesh ,(c) h Refined mesh
(d) Convergence of results with uniform refinement and h-p
adaptive procedure
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MESH I1, for p=4 D.O.F.:I1,4 A \ B[. /
q=11.8%

!N

(a)
MESH 2, for p=4 D.O.F.=572

9=0.B1%

(b)
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FIGURE 9b PROCEDURE 11 IN THE h-p VERSION ANALYSIS OF SHIORT CANT[ILEV r - )
(,. BEAM WITH RIGIDLY FIXED SIDE . p REFINEMENT USED IN ORIGINAL-

MESH (a) ACHIEVING 11.8% ACCURACY AT p=4. TIlS ALLOWS ERROR
IN EACH ELEMENT TO BE DETERMINED FOR 0=3 (b) . FINAL CONVERGErliFf
OF RESULTS SHOWN IN (c) (
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Original mesh Adaptive refined mesh
D.O.F. 273 q = 11.38% D.O.F. 1303 q = 3.73%

( )

Adaptive refined elongated mesh Final deformed material grid
D.O.F. = 1039 q = 2.76%

FIGURE 11 COMPRESSION OF A UNIFORM , IDEALLY
PLASTIC SPECIMEN WITH A CENTRAL
DEFECT MODELLED AS A CIRCULAR
OPENING.
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' C FACTORS AFFECTING RELIABILITY OF COMPUTER SOLUTIONS WITH
HIERAPOCHICAL SINGLE SURFACE CONSTITUTIVE MODELS

C. S. DESAI, G. W. WATHUGALu, K. G. SHARMA AND L. WOO
Department of Civil Engineering and Engineering Mechanics

University of Arizona
Tucson, AZ 85721, U.S.A.

ABSTRACT

Influence and sensitivity of various material constants in the

advanced hierarchical single surface (HISS) plasticity based models

on finite element computer solutions are first discussed. Such

factors as drift correction and time integration schemes in

conjunction with various versions in the HISS approach are

considered with respect to their influence on reliability and

robustness of computer solutions. Practical examples involving

dynamics of piles in porous anisotropically hardening soils, and

static and dynamic response of concrete experiencing damage and

softening are presented.

1. INTRODUCTION

Reliability and robustness of computational methods are

dependent upon various factors related to the mathematical and

numerical characteristics of the methods, properties of computers

used, and various physical characteristics such as nonlinear

material response and geometry.

1.1 Scope

Nonlinear material response is one of the vital factors that

can influence significantly the reliability of computer solutions.

(Another important factor is appropriateness of the time integration

schemes for nonlinear dynamics and field problems..
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~ ( The main objective of this paper is to discuss a number of )
important attributes of material response, and a brief description

of time integration schemes in the context of the nonlinear

response.

A number of constitutive models, linear elastic, nonlinear

elastic, classical elasto-plastic with unique description of yield

stress, recent elasto-plastic with continuous yielding including

such special properties as volume change, stress path,

nonassociativeness, damage and softening, anisotropic hardening and

viscoplasticity have been proposed and developed. Here, the main

attention is devoted to the hierarchical single surface (HISS)

concept developed by the authors and co-workers [1-6], in the

context of the theory of plasticity.

Many of the above attributes are important for geologic

materials (soils, rocks and concrete) and material contacts

(interfaces and joints), which is the main concern herein. I'- may

be noted that the models, analysis and results discussed here are

applicable also to other classes of engineering materials and

contacts such as in concrete, metals, composites and ceramics.

2. BRIEF BACKGROUND

The incremental finite element equations can be expressed as

where [k] is the variable stiffness matrix, (Aq), (AQ) and (AQ)

are the incremental nodal displacement, applied load and residual

load vectors, respectively. The stiffness matrix is given by

2



[k] - f(BJTC](B]dV (2)

where [B] is the transformation matrix, [c] is the tangent

constitutive or stress-strain matrix, and V is the volume. For

different types of material responses, elastic, nonlinear elastic,

elasto-plastic, viscoplastic, etc., the matrix (C] is defined by a

set of material constants. For example, for 1iriar elastic

isotropic materials, they are foung's modulus E, and Poisson's

ratio, u or shear modulus G and bulk modulus K (or B), whereas for

elasto-plastic materials, they will be E, u and al (i = 1, 2 . .

n), where the number of ai will depend on various models such as

perfectly plastic, hardening, softening, damage, and viscoplastic.

Here a plasticity based hierarchical single surface (HISS)

modelling approach for solids and discontinuities is proposed by

Desai and co-workers [1-61. This approach, depicted in Fig. 1,

allows for various types of behavior such as associative,

nonassociative, anisotropic hardening, damage and softening, fluid

pressure and viscoplastic. It also allows for such special

features as effect of state of stress, stress paths, initial

density, roughness at interfaces, volume change (dilation) and

induced anisotropy.

The attention here is centered on the discussion of the

influence of some of the above factors on tile reliability of

computer solutions and the need for special techniques required to

deal with them. Before this discussizn, a brief description of the

modelling approach is given.-

3. HIERARCHICAL MODELS FOR SOLIDS

For the basic 6,-model following isotropic hardening and

3
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associative response, the yield surface F is expressed as

F = J2D/Pa - Fb FS) (3)

Fb = " a(Ji/p,)n + Y(Ji/P) 2, and

FS - (17 OSr)M

Sr - stress ratio (/12) J3D/J2 D1 .5 , pa = atmospheric pressure, a, n,

, 6 and m are response functions or parameters, Ji (i = 1, 2, 3)

invariants of the stress tensor aq and D denotes deviatoric. The

basic function Fb is related to F in J, - J2, space, Fig. 2(a), and

the shape function F. is related to F in the principal stress

space, Tig. 2(c).

For the nonassociative case, the plastic potential function,

Q, is expressed as the stem of F and the correction function

h (Ji,):

C Q - F + h (Ji, ) (4)

where = (deij p de,1 )1/ 2 and ei P = total incremental plastic strain

tensor, and d denotes increment.

A simple form of hardening or growth function is given by

a = al/t (5a)

where a, and q, are hardening constants. Another growth function

used to include effects of both volumetric and deviatoric

components of plastic strains is given by

a. hi (5b)

where hi = 1, 2, 3) are material constants and tv and t, are the

trajectories of volumetric and plastic strains, respectively.

C Some of the special characteristics and advantages of the )
single continuous yield surfaces, F, Fig. 2, are (1) the function

4



( defines continuous yielding and involves no intersection of yield

surfaces, (2) the final yield surface corresponds to the unique

ultimate state, thus ambiguities due to the use of other

definitions such as peak and failure are avoided, (3) the concept

allows for easy incorporation of the change in shape and size of F,

(4) the hardening function (a) depends upon both volumetric and

deviatoric plastic strain trajectories, (5) different strengths in

compression and extension are allowed for, (6) allows for

initiation of volume dilation before peak stress, (7) the

hierarchical approach allows for the devleopment of models of

progressive complexities such as nonassociative (6,), anisotropic

hardening with fluid prs;.ee ( 6 2,p) , damage and softening (6 r) and

viscoplastic (6,), an4 V) the formulation possesses consistent

theoretical basis.

Details of the above concept, verificationof models and

implementation for various static and dynamii problems are given

elsewhere [1-8]. The list of the required material constants

involved in the 60, 61, 60., and 62, p models is given below:

Elasticity: E, u or K and G (or B)

Plasticity:

Hardening: a,, v7, Eq. 5(a)

Ultimate: y, P(F when a = 0)

Phase Change: n (Defines the state at which the

volume change transits from

compressive to dilative)

m = -0.5

x - nonassociative parameter; defines h

5



in Eq. (4).

ru, k, R - damage parameters (in damage

function r - ru (1 - k)

hl, h2, h3  - hardening parameters (for cohesive

soils), Eq. 5(b).

4. HIERARCHICAL MODEL FOR CONTACTS

The specialized form of F for planar contacts such as

interfaces and joints is given by

F-(r.lp 2+ a (G p . ) 'Y(0 ,p/) 2 o (6)

where r and an are the shear and normal stresses at the interface.

The hierarchical formulation for contacts follows the same

procedure as for solid with t given by

tf[(du +dvf] 11 (7)

where durp and dvrp = increments of plastic shear and normal

(relative) dislacements. The other aspects follow similar to those

for solids; details are available elsehwere [6, 9].

,S. DISCUSSION OF FACTORS

The discussion is presented under three sections (1) Material

Parameters, (2) Special Characteristics, and (3) Implementation.

5.1 Material Parameters and Constants

Variability and sensitivity of material parameters are among

the two factors that influence the reliability. Determination of

the parameters from laboratory and/or field testing is an integral

part of this consideration.

,6



f (:5.2vaiblt
Most of the testing for finding material constants is

performed in thelaboratory. For geologic materials like soils and

rocks, it is usually necessary to obtain specimens in the field and

then bring them to the laboratory. This process itself can

introduce considerable uncertainty and variability in the material

parameters due to the sample disturbance, which is caused due to

reasons such as change in the state of stress, and water content

during the transportation from the field to the laboratory, This

topic is indeed complex,.and the effect of the sample disturbance

on the material parameters is difficult to assess. Some empirical

methods are available for limited number of constants involved in

conventional models. However, they may become unreliable when a

greater number of constants need consideration.

In contrast to specimens of metal and composites, where it is

relatively easier to construct samples with the same (initial)

properties, it is difficult to do so in the case of geologic

materials. For instance, it is difficult to fabricate specimens

with the same initial isotropy and density. As a consequence,

specimens tested under the same loading conditions and path may

exhibit different stress-strain-strength behavior. Hence, it is

necessary to perform averaging, least square or optimization

analysis, so as to obtain representative and weighted values of the

constants. Use of optimization techniques is perhaps the most

effective way; however, this area still needs continuing

developments. At this time, the most common techniques used are

7



(based on the least square methods, which are also used for the

results considered herein.

5.3 Sensitivity of Constants

Sensitivity of selected constants for the HISS models is

discussed below. This is achieved in terms of the influence of the

changes in these constants on the predictions from constitutive

models themselves [10]. It is implied that when such models are

implemented in computational procedures, the reliability of the

computed results will be affected by the variation in the

constants. In other words, for reliable and accurate results, it

is necessary to evaluate the material constants as accurately as

possible, based on appropriate laboratory and/or field tests

coupled with consistent least squt:e and/or optimization schemes.

C5.3.1 flastic Constants G and B (or K)

Values of elastic constants not only define the behavior of

material inside the yield surface, it also can considerably affect

the computed response during undrained virgin loading. Effect of

the values of elastic constants, shear modulus (G) and bulk modulus

(K or B), on the predicted undrained behavior of a typical normally

consolidated clay is illustrated in Figs. 3 and 4. Figures 3(a)

and (b) show shear stress vs. shear strain curves ana the

corresponding stress paths, respectively, predicted by the model

with constant shear modulus (= 790 psi) aud varying bulk moduli

from 700 to 20,000 psi. Figures 4(a) and (b) illustrate the effect

of G varying from 100 to 5000 psi'on the predicted effective stress

path and shear stress-shear strain curves, with constant B = 3667

psi. From Figs. 3 and 4, it can be seen that the undrained

8
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'i effective stress path is essentially independent of values of G,

and strongly dependent on those of B. On the other hand, the

initial slope and response in the predicted shear stress-shear

strain curve is controlled by the values of G.

5.3.2 Phase Change Parameter. n

The phase change parameter n that defines the point at which

the volume change transits from compression to dilation iz among

the factors that govern the shape of the yield surface, F, the

equation for which can be expressed as

JD ?1-2 2 J .(8)

()(-)()R -- .()!.J -(8)

where J,, and J2, are maximum values of J1 and J2, on the yield

surface. From Eq. (8), it may be observed that the shape of the

yield surface in the normalized stress space is controlled by the

value of n. Yield functions for different values of n are plotted

in Fig. 5. It is observed here that the yield surface becomes

skewed with increasing n values, and at the limit (n-w) the yield

surface tends to the triangular shape.

5.3.3 Ultimate Parameter, B

Shape of the yield surface on the octahedral plane is governed

by the value of 3. Here study of traces of yield surfaces on

octahedral plane for different values of P showed that the yield

surface is circular in the octahedral plane for 0 = , and with

increasing values of P the shape of the yield surface tends to a

triangular shape with rounded corners. When P > 0.77, yield

surface becomes non convex. Figure 6 shows the shape of yield

surfaces in the p-q space where q - a - 03, and p = (01+ 02 + 03)/3,

9



(- for different values of p. It can be observed from this figure )

that the relative size between the compression and extension

regions of the yield surface is controlled by the value of p.

Higher the P value, higher the difference between compression and

extension strengths of the soil.

5.3.4 Hardening Parameter, h3

This parameter defines the effect of plastic shear strain on

hardening. Figure 7 shows predicted effective stress paths for

different values of h3; h3 = 0 indicates that hardening is

controlled only by the volumetric plastic strains, while the

influence of the deviatoric strain increases with increasing values

of h3.

5.3.5 Nonassociative Parameter. K

(Nonassociative parameter, K, in the 61 model controls the

volumetric behavior of (drained) shear tests. Figure 8 shows the

effect of on the predicted volumetric response of a typical

granular material. It is observed here that the variation of a

from 0 to 1 changes the volumetric response that ranges from

compactive to dilative. However, this variation had only small

effect on the shear stress-shear strain response.

6. THIN LAYER ELEMENT FOR CONTACTS

The thin layer element concept (11] is used here to simulate

the interface or joint as a "smeared" zone of finite thickness (t)

with properties different from those of the surrounding elements.

For the finite element calculations herein, the ratio of thickness

t to the width B (t/B) of the element is 0.01, Fig. 9.

10



The intluence of K for the contact or joint (in concrete) is

shown in Figure 10 for a typical rough joint (with asperity angle

of 5 degrees), (6, 9]. From the finite element analysisi it can be

seen that for the joint considered, the computed results compare

well with laboratory test data (6, 9] for the value of K equal to

0.6 to 0.7.

The above analysis indicates that the sensitivity of

predictions and computer solutions to variations in various

constants can be expressed in the relative order of decreasing

importance as hardening and softening, phase change, elastic and

ultimate.

7. IMPLEMENTATION

In a nonlinear iterative finite element procedure, the

computer module representing the constitutive relation

do)-[C"](de (9)

t )re (da) and (de) are vectors of incremental stress and strain,

respectively, and (C] is the tangent elasto-plastic matrix, may

be called thousands of times. Also, with an advanced plasticity

based model for anisotropic hardening response, it is very

important to evolve an efficient and robust scheme to affect the

drift correction procedure in order to satisfy the consistency

condition during the incremental stress or strain and the

iterations therein. Such a driv" correction procedure is developed

(10] by taking into account the best properties in available

procedures such as the subincrement method (12:, drift correction

methol (13], and the elastic predictor plastic correction method

[14].
11



7.1 Basic Formulation of Drift Correction Scheme )

Figure 11 schematically shows the iterative procedure used

during virgin loading conditions. The problem may be expressed as

Given aIJ o, a, 0 |o, deu t and

F (on, a ° ) = 0 (10)

Find a Cij, a c ti

which satisfy following relationships

F OJC a) - 0 (11)

d d Ii Ij(12)
C 0 eea.. . +o dc

U ijkZ dcR. (13)

f 0 )
f€ " .i )  (f.(d.

BC - (IC)(15)

CWhere superscripts o and c refer to quantities associated with

the state 0 and C in Fig. 11, dei tI deie and dei p are total, elastic

and plastic incremental strain tensors, respectively. Cijkt is the

elastic constitutive tensor, ti are different trajectories of

plastic strains such as t, C. and E," The functions fi relate

incremental plastic strains to incremental strain trajectories, and

f. is the hardening function.

Equations (10) to (15) are solved in two stages using a

predictor corrector a ;orithm. The intermediate stage I is found

from

j ° CIjkedek (16)

Elastic predictor plastic corrector method [14] uses elastic

constitutive tensor, Cijkt* in Eq. (16), and plastic predictor

plastic cocrector method (drift correctiorn method (13]) uses the

12



initial elasto-plastic matrix, Cijkt in Eq. (16). It was found

that both methods lead to similar results for the case of small

strain increments. However, for large strain increments, special

procedures may be necessary to handle some difficulties which are

described elsewhere [10].

After algebraic manipulations, oi€ can be obtained as

Ci (, I ) cijkt nkt (17)

where q1 I

,,Q.,Q[(QOQ /2] (18)
oa aMRaam

and Q is the potential function.

( Special procedures were developed for cases where

(i) J 1I < 0, (2) Jc < 0, (3) F (ai , aI) < 0, and (4) F (aijC c) <

0.

Due to space limitations, details of these procedures are not given

here but can be found in [10].

7.2 Effect of Subincrements on Iterative Algorithm

The effect of magnitudes of subinbcrements on the accuracy and

reliability of the constitutive model module is studied using the

proposed plastic- predictor plastic corrector (drift correction)

method. First, the accurate strain path for a TC test (triaxial

compression with J1 = constant) [15] is calculated by using the

stress to strain algorithm [10]. Then two points in this strain

path, one before the phase change line and one after the phase

change line, were selected for numerical experiments.

Stress paths for three strain increments .of the order of

13



10.3 are predicted using three sizes of -subincrements. Figure 12(a)

shows the predicted stress path including iteration steps for

subincrements of the order of 10' 1 10.' and 10' in the compaction

region. Note that the first coincides with no subincrements.

Figure 12(b) shows the similar plots for the numerical experiments

in the dilatation region. Following observations may be made from

these figures: (1) all the strain increments converged in two to

three iterations, (2) predicted stress paths are 'accurate' only

for smaller subincrements, (3) return path is not perpendicular to

the potential surface, and can make very small angles with it, (4)

convergence does not necessarily imply that the final answer is

correct; therefore, it is important to limit the maximum size of a

strain increment, (5) since the return path can make small angles

( with the yield surface, the exact stress point where aQ/8oai is

calculated is very important. With the elastic predictor plastic

corretor method, it was found that if aQ/aoij is calculated at I

(Fig. 11) as suggested in [14), the solution drifted away,

especially in the dialation region, and (6) from the curved nature

of the predicted stress path in Figs. 12(a) and (b), it is

concluded that the plastic prediction is very sensitive to the

stress point where Cp ijkas calculated in the plastic predictor

plastic corrector method. For the numerical experiments conducted

for a TC test, it was found that if C*ijka is calculated at [a.,* +

0.35 (ojlj - Oij°)], improved results are obtained. Since a is not

known in advance, it is necessary to perform few iterations here.

7.3 ARDlication: Dynamics of Porous Media

C The anisotropic hardening (82.p1 constitutive model with the

1
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( above drift correction scheme has been implemented in a nonlinear

dynamic finite element procedure based on the generalized Biot's

theory for dynamics of porous media. This program was used to back

predict the field response of an instrumented pile segment under

cyclic loading [10, 16]. The finite element mesh for the pile

segment subjected to cyclic loading is shown in Fig. 13. Here

various stages such as initial stress, driving of the pile,

consolidation and cyclic loading are simulated as they occurred in

the field. Typical comparisons between predictions and

observations for shear stress vs. relative displacement of pile are

shown in Fig. 14. The correlation between the two is considered to

be highly satisfactory.

8. DAMAGE AND SOFTENING

" The damage model, Sor, among the hierarchical models,

considers strain softening as the performance of the structure,

with a damage parameter r, which represents the ratio between the

volume of the damaged or fractured part, and the total volume [3,

4, 17]. The damage parameter, r, relates the mean stress to the

topical or continuum stress in the undamaged part of the material

as follows:

- -o (19)

Here r is related to the deviatoric plastic strain trajectory D as

follows:

r = ru (1-exp(-k(10 ) )) (20)

in which ru is the ultimate value or r, and k,, R are damage

constants.
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( Introducing of the damage model in the finite element _)

procedure leads to the following equation:

fv[B]'[L][B]dV(dq) = (Q]-fv[B]T( oG)dV+Jv[B]T(S')drdV (21)

in which (dq) is the vector of incremental displacement, (Q) is the

vector of external loading, (00) is the vector of mean stress, (St}

is the vector of deviatoric topical stress, dr is the increment of

the damage parameter for the last iteration and (L] is the

nonsymmetric constitutive tensor expressed as

LiJkt - (1-r) Cijk 4 j 6 J Cje (22)

Alternatively, we can leave the symmetric (Cep] on the left-

hand-side, and transfer a term corresponding to the non-symmetric

component to the right side as

fv[B]TCC"][B]dV (dq) = Q - J,[B]J(am)dV

+f[B]T S')drdV + JV[B] (dS)')rdV (23)

in which (dSt) is the vector of the increment of the deviatoric

topical stress for the last step. Both these strategies can help

to overcome the numerical difficulties by avoiding an ill-

conditioned matrix on the left-hand-side when damage and subsequent

softening occurs.

8.1 Application

The damage model with the foregoing drift correction scheme is

implemented in a nonlinear finite element procedure for both static

and dynamic analysis [17]. Typical examples are given below.

Figure 15 shows the mesh for the quarter of a concrete block

subjected to uniform compression q on the side; meshes with 1-, 4-

and 16-elements were used. Uniform displacements are prescribed on

the top of the block. The material constants for concrete are

16



given below.

E = 37000 N/mm ;  - 0.25; N - 5.237; y - 0.06784; = 0.7553;

m - -0.5; a1 = 4.714E-11; t7 = 0.8262; ru = 0.0, 0.2, 0.4, 0.6; k =

968.8; and R = 1.503.

The results in terms of stress and strain (at the lower left

Gauss point) for the static analysis are shown in Fig. 16 for four

different values of ru. The proposed procedure provided consistent

results for the damage problem.

8.2 Time Integration and Damaqe Problem

For dynamic nonlinear problems involving such complexities as

damage and softening, it is also necessary to use appropriate time

integration scheme. Here, the the Generalized Time Finite Element

WMethod (GTFEM) proposed in [18, 19] is used. It involves a

weighted residual approach and considers the equilibrium over a

time period instead of the equilibrium at a certain time level.

The vector of weighting functions (W) is given as

In which an are weighting parameters, and

t-tI-
To ti " Ci-1 (24b)

Applying the weighting functions onto the finite element

equations and integrating, and, at the same time, using the

relation

1/(n1) W2)jti~jn- 1 1 2/n+2 1
17



we arrive at the time integration recurrence formula
("1 t"[I + H2 . [Ci + H3 (K] d+ I (6

(H1  +M 1H+ (i (26)
At

"F+(2H C-4 tKc1dtH1 It"'" tCl+H 3tK)d 1
at 2Att

For linear problems, [K] matrix is constant, and the above

method yields the same results as the Newmark method. However, for

nonlinear problems, (K] is not evaluated at specific time step, but

is evaluated at a displacement value de, which is weighted between

di.1, di and di 1,, Fig. 17:

d = (1/2 + 81 - 82)di. I + (1/2 - 281 + 82)di + 8 1di 1,(27)

The weighting values of 81 and 82 can be adjusted to improve

accuracy [18, 19].

(Since the equilibrium is averaged- over a time period, the

GTFEM is found to be more stable than the Newmark method when

treating problems with highly nonlinear material properties such as

that involving damage and softening. One-dimensional problems with

the plastic Ramberg-Osgood model, and two-dimensional problems with

the 6o.r damage model were solved, and it was shown that when using

the unconditionally stable Newmark method ( y = 0.5, P = 0.25), the

results became unreliable when the time step approached the natural

period of the system. Whereas, using the GTFEM, the results were

still stable [17].

With the damage model, the concrete block, Fig. 18, is

subjected to a dynamic load on'the top, Fig. 19. The material

constants are the same as in the static problem, except that ru is

Ctaken as 0.5. When the time step is taken as 0.001 second, both

the Newmark method and GTFEM gave exactly the same solution, which

is considered as the "accurate" one (Fig. 20a). It can be seen

18



(sc that the natural period of the system is approximately 0.08 second.

When the time step is increased, the solutions of the two methods

start to differ. When the time step reaches 0.05 seconds, which is

comparable with the period, the solution from the Newmark method

starts to diverge after about 1.5 seconds (Fig. 20b), and when the

time step reaches 0.1, which is larger than the period, it diverges

after 0.5 seconds (Fig. 20c). However, in both cases, GTFEM gave

stable solutions.

Thus, in addition to proper attention to the plasticity based

constitutive model and associated drift correction scheme, it is

also necessary to use an appropriate time integration scheme for

nonlinear dynamic problems.

9. CONCLUSIONS

The study presented herein shows that (1) accurate

determination of material constants in constitutive models is

important for reliable computer solutions because a small change in

values of some of them can cause significant changes in the

computed solutions, (2) for highly nonlinear static and dynamic

problems involving anisotropic hardening, and damaged and softening

materials, it is necessary to develop and use proper drift

correction and time integration schemes; otherwise, the computed

solutions may lose reliability and robustness.
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Fig. 8 Effect of Nonassociative Parameter K on Volume
Chang, Behavior I, = 61+62+E3

Fig. 9 Thin Layer Element and Example Problem

Fig. 10 Effect of Nonassociative Parameter on Dilative
Behavior; ur, Vr = Relative Shear and Normal
Displacements, Respectively

Fig. 11 Schematic of Drift Correction Procedure

Fig. 12 Effect of Strain Increment Size on Convergence
(a) In Compaction Region, (b) In Dilatation Region

Fig. 13 Finite Element Mesh for Cyclically Loaded Pile

Fig. 14 Comparison of Predicted Shear Stress vs. Relative
Displacements for Pile Problem

Fig. 15 Mesh for Static Problem in Damage and Strain
Softenini Concrete

Fig. 16 Predicted Softening Static Stress-Strain Response

Fig. 17 Weighting for dO in GTFEM Scheme

Fig. 18 Mesh for Dynamic Problem in Damage and Strain
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Fig. 19 Applied Load for Problem in Fig. 18

Fig. 20 Predicted Vertical Displacement vs. Time Plots for
Newmark and GTFEM Schemes (a) At = 0.001 sec,
(b) At = 0.05 sec, (c) At = 0.1 sec.
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ABSTRACT

The use of a priori information in finite element analysis is discussed with

reference to (a) definition of mathematical models; (b) selection of the extension

process for controlling iie errors of discretization; (c) a posteriori estimation of

error in energy norm, and (d) extraction of engineering data from finite element

solutions. The discussion focuses on the displacement formulation. Examples are

presented.

1. INTRODUCTION

Corresponding to any well formulated mathematical model is an exact solu-

tion, denoted by U1 x, which depends on the choice of formulation and the data

which characterize the geometry, material properties, loading, and constraints,

but is independent of the discretization. Corresponding to a particular choice of

discretization is a finite element solution, aps, and a number N, called the num-

ber of degrees of freedom, which is the number of linear algebraic equations one

has to solve in order to obtain iB. If the problem is well formulated and the

discretizations are properly selected then iFE --+ ilx as N -- 0c.

In the following discussion only the displacement formulation is considered.

In the displacement formulation the difference between isx and gpw is naturally

measured in the energy norm. By definition, the energy norm of a displacement

-t Presented at the Workshop on Reliability in Finite Element Computations, Austin, Texas, October
26-80, 1989. To appear in Computer Method. in Applied Mechanics and Engineering in 1990.



function a is the square root of the strain energy of it, which is usually denoted by )
IIuIIE. In the displacement formulation Cps -- 4sx in the following sense:

hii Ilitx - Cis 0. (1)
N-o

The choice of a particular discretization involves the creation of a set of func-

tions S on the solution domain fn. S is characterized by the mesh A, the mapping

functions Q, that is the functions which map standard finite elements onto the

elements of the mesh, and the function spaces defined on the standard elements,

called standard spaces. Most commonly the standard spaces are polynomial spaces

characterized by the polynomial degree p. Hence S = S(O, A, Q,p). By definition,
Q = {Q(), ., QM()} p = {Pi, p2, ... , pm(A)} where M(A) is the number of

elements in the mesh. In this paper only the case of uniform p, that is pi = p

(i= 1,2,..., M(A)) is considered.

The subset of functions in S which satisfies the kinematic boundary conditions

is denoted by §. The number of degrees of freedom N is the number of linearly

independent functions in §. The finite element solution is that function from 9

which minimizes the error in energy norm:

1 iUex E CiE 1's = miEX - UI1E. (2)

The error 1IIUx - CFslls can be reduced in various ways: by mesh refinement;

changing the mapping; changing the standard spaces; increasing the degree of

the standard polynomial space, or any combination of these. For reasons of im-

plementation most commonly the mesh is refined, or the degree of the standard

polynomial space is increased, or mesh refinement is combined with increase of

the polynomial degrees. These approaches are respectively called h-extension,

p-extension and hp-extension. When aspects of implementation rather than re-

duction of error are discussed then the word version instead of extension is used.

From the point of view of implementation there are substantial differences between

the h-version on one hand and the p- and hp-versions on the other.

-2-



2. THE DEFINITION OF MATHEMATICAL MODELS.

Mathematical models are essentially transformations. They transform one set

of data, the input data, into another set, the output data. Mathematical models

cannot improve on the quality of the information which resides in the input data.

They can, however, damage the input information so that the output informa-

tion is useless and worse, misleading. The most important use of priori analysis

in engineering computations is related to the proper definition of mathematical

models.

2.1. Models based on the displacement formulation.

For models based on the displacement formulation it is necessary that the

potential energy of the exact solution II(Oix) be bounded from below and the

energy norm measure of the exact solution jjtqsxjjs be nonzero. In addition, the

model has to be consistent with the goals of computation: If the goal is to compute

certain functionals, such as, for example, stress maxima, then the functionals of

interest computed from the exact solution have to be finite.

Surprisingly, the problem of proper model definition has received very little

attention in the finite element literature. Often model definitions are based on

intuitively plat.sible reasoning which violates one or more of the conditions listed

in the preceding paragraph. The most common modeling errors are:

1. Use of concentrated forces in two- and three-dimensional elasticity and in

plate/shell models based on the Reissner-Mindlin or higher theories. This

violates the condition that the potential energy must be bounded from below.

2. Use of point constaints. Point constraints should be used only as rigid body

constraints, that is the external loads must satisfy equilibrium. If this con-

dition is not satisfied then, depending on other boundary conditions, either

fl(aEx) = -oo, or IUEaxlis = 0, or I-Ex is not distinguishable in the energy space

from the solution which would be obtained if the point constraint were not

applied.

3. One or more functionals of interest computed from the exact solution are

infinite. For example, the goal is to determine stress maxima in elasticity and

_ the exact value of the maximum stress is infinity.

-3

-I _ _ _ _ _ _ _. . .... ... .. . . .. . ... .



(" The finite element solutions and/or the functionals of interest computed )
from the finite element solutions based on such models are entirely discretization-

dependent. The data computed from the finite element solutions can be of credible

magnitude and therefore very misleading. Some specific examples are presented

in [1,2].

2.2. Models based on other formulations.

Models based on other than the displacement formulation must satisfy con-

ditions analogous those described in Section 2.1 and, in addition, they must be

shown to satisfy the Babuika-Brezzi condition [3]. The Babuka-Brezzi condition

is an essential a priori requirement, satisfaction of which guarantees that the for-

mulation works well for all admissible input data. (The displacement formulation

trivially satisfies this condition). If the Babugka-Brezzi condition is not satisfied

then the formulation will fail for some admissible input data. The practice of

using formulations which do not satisfy this condition, has led to models that

worked well in some cases but not in others. For example, elements based on such

(formulations may work well for the simple problems typically used in benchmark

studies but fail in some of the more complicated problems used in professional

practice. For some formulations it is very difficult to establish whether or not the

Babugka-Brezzi condition is satisfied.
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the3. CONTROL OF THE ERRORS OF DISCRETIZATION

Given that h-, p- and hp-extensions are alternative approaches to controlling

the errors of discretization, the question naturally arises: When and why should

one choose h-extension, p-extension or hp-extension? This question is now exam-

ined from the theoretical and practical points of view. The essential difference

between the theoretical and practical points of view is that theoretical estimates

are concerned with the asymptotic behavior of the error measured in precisely

defined norms, usually the natural norm of the formulation, whereas in practi-

cal analyses one is concerned with approximating certain functionals, typically to

within one to five percent relative error. The functionals of interest may or may

not be directly related to the natural norm, however they can be related to the nat-

ural norm by means of extraction procedures discussed in Section 5. Satisfactory

approximations often can be achieved well before the asymptotic range is entered.

Experience is an important a priori information for designing the discretization.

3.1. Classification of problems.

It is useful to classify the exact solution qzx in relation to the finite element

mesh into three categories:

Category A: ilEx is analytict on each finite element, including the boundaries

of each finite element.

Category B: tAsx is analytic on each finite element, including the boundaries

of each finite element, with the exception of some of the vertices (in three

dimensions also along some of the edges). The points where Esx is not analytic

are called singular points.

For problems in category B the exact solution in the neighborhood of singular

points can be typically written as the sum of some smooth function and a

function in the following form:

uEX=E ArAJ4i(e) r > ro (3)

where r, 8 are polar coordinates centered on the singular point; Ai are coeffi-

(cients which depend on the loading; Ai is a fractional number, greater than

t A function is analytic in a point if it can be ezpanded in.'o a Taylor series about that-point.
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zero; 4j(a) is a smooth or piecewise smooth function, and ro is the radius of

convergenece. It is possible to determine Ai and fi from the definition of the

model. Details are discussed, for example, in [4].

We will say that a problem is strongly in category B if A 4-f min A < 1 (i =

1,2,...) otherwise it is weakly in category B. This choice of subdivision of

category B is made with reference to the fact that in computational mechanics

one of the usual goals is to compute stress data which are related to the

first derivatives of the displacement. For problems strongly in category B

the maximum stress is infinity in the singular point, whereas for problems

weakly in category B the stress is finite on the entire domain. If the goals

were to compute, say, the second derivatives of the stress, then it would be

logical to regard problems for which A < 3 as being strongly in category B.

Whether a problem is strongly or weakly in category B often depends on

decisions concerning idealization. Given alternative choices of idealization, it

is generally preferable to select the idealization so that A is as large as possible( [5].

Category C: The mesh cannot be constructed so that singular points are at

vertices (or, in three dimensions, the singular points are along element edges)

or the locations where abrupt changes occur in the derivatives of qZEx, such

as material interfaces, are at interelement boundaries. This is because the

locations of singular points are solution-dependent.

We will say that a problem is strongly in category C if A < 1 and the distri-

bution of singular points lacks any a priori recognizable pattern. In this case

the solution is said to be uniformly unsmooth. We will say that a problem is

weakly in category C if A > 1 or the singular points are distributed in some

regular pattern.

Let us consider, for example the tension strip withi a circular hole, shown in

Fig. 1. Let us assume that the material is modelled by the elastic-strain hardening

stress-strain law, shown in Fig. 1, and the material exhibits the Bauschinger effect.

If the material'is never loaded such that the yield point Oyiedd is exceeded then the

solution is very smooth and the problem is very weakly in category B. The reason

that it is not in category A is that in points A and B the solution is of the form
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Fig. 1. Tension strip with a circular hole.

(3) with m 2.75, see for example [4]. If the load is increased past the yield point

and kept constant, or cycled with a constant amplitude, the problem is weakly in

category C. The singular points are the points on the boundary between the elastic

and plastic regions which is, of course, solution-dependent. If the load is cycled

with variable magnitude so that the yield stress is repeatedly exceeded in tension

and compression then the problem is strongly in category C: the distribution of

the singular points is dependent on the load history. In this case no pattern is

discernible a priori for the distribution of singular points, except that there may

be regions where the stress does not exceed the yield point, and the solution on

those regions belongs in categories A or B.

3.2. A priori estimates of error.

Based on the classifications defined in Section 3.1, close a priori estimates are

available for the error measured in energy norm. These are asymptotic estimates,

that is the estimates are close when N is sufficiently large. A priori estimates

indicate the rate of change of the error with respect to increasing number of

degrees of freedom. Clearly, it would be better to know the rate of change of

the error with respect to some work measure, such as the number of operations,

rather than the number of degrees of freedom, but such work measures are strongly

implementation- and machine-dependent, hence difficult to interpret.

Using the asymptotic rate of change of the error measured in energy norm

with respect to the number of degrees of freedom as the basis for comparison, the

available a priori estimates provide a basis for the choice of extension process:

For problems in category A the most effective method for controlling the

errors of approximation is by p-extension because the error measured in energy

-7-



,'-. ( norm, decreases exponentially when p-extension is used:

k
1ilax - tisIla <5 kx( (4)

where k, -y, a are positive numbers. If h-extension is used for problems in category

A then the asymptotic rate of convergence is algebraic:

IIlax - t&Fs llE <5 (5)

where k and p are positive numbers with M - rain(p, A)/2.

For problems in category B the most effective method for controlling the

errors of approximation is by hp-extensions: The mesh is graded so that the sizes

of elements decrease toward the singular points in geometric progression with a

common factor of about o.1s. Such meshes are called geometric meshes. The

polynomial degree of elements is distributed linearly, with rounding to the nearest

integer, such that the lowest polynomial degree is assigned to the smallest elements,

(the highest polynomial degree to the largest. If h- or p-extensions are used for

problems in category B then the asymptotic rate of convergence is algebraic. If

the singular points are nodal points then the asymptotic rate of convergence of p-

extensions is characterized by # = A, otherwise f = A/2 in eq. (5). If the meshes are

adaptively constructed for h-extensions then the asymptotic rate of convergence

of h-extensions is characterized by p = p/2 otherwise by p - min(p, A)/2.

For problems strongly in category C h-extension is the best approach. In this

case convergence is algebraic. For problems weakly in category C some combina-

tion of the h- and p-extensions or h- and hp-extensions is the best approach. In

this case mesh refinement is used in those regions which contain the singular point

and p- or hp-extension is used elsewhere. The asymptotic rate of convergence is

algebraic but much faster rate of convergence can be realized in the preasymptotic

range [6].

3.3. Practical aspects.

Most problems in linear elastostatics and linear elastodynamics and many

nonlinear problems belong in category B and engineering accuracy can be achieved
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S"-by p-extensions in the preasymptotic range if properly designed meshes are used.

Hence the use of p-extensions and properly refined meshes are of substantial im-

portance in engineering design and analysis. In fact, h-extension is not a good

choice for such problems.

Particular choices of mesh depend on (1) what data are of interest; (2) what

accuracy is desired, and (3) how the data are to be computed. For many problems

in category B geometric refinement at singular points is not necessary and in many

important cases even the requirement that a singular point has to be a mesh point

can be relaxed: Engineering accuracy can be achieved with p-extension, and coarse

finite element meshes. This is demonstrated by examples in Sections 6.

Whether sufficient accuracy can be achieved by p-extension for a particular

choice of mesh cannot be known a priori. A priori information about the solution

and the asymptotic rates of convergence can be used, however, in guiding the

refinement process. In general, it is best to start with a simple mesh and performip-extension. The error in energy norm is estimated by the method outlined in

( Section 4 and convergence of the quantities of interest is observed. If convergence

of the quantities of interest is realized, and the error in energy norm is small, then

the discretization error for the mathematical model is small. If convergence is

not realized, and/or the error in energy norm is large, then the mesh has to be

refined. For best results mesh refinement should be patterned after the optimal

meshing for hp-extensions: The mesh should be graded in geometric progression

toward the singular points with a common factor of about 0.15. p-Extension is

then performed on this fixed geometric mesh. The results are checked for accuracy

and, if necessary, additional' layers of elements, graded in geometric progression,

are introduced at the singular points. The number of layers needed thepend on

the coefficient of the singular term. In most cases two layers are sufficient. Once

again, a sequence of solutions is obtained by p-extension. The strain energy of

the error decreases exponentially, provided that there is a sufficient number of

elements at the singular points.
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4. A POSTERIORI USE OF A PRIORI ESTIMATES.

The a priori estimates described in Section 2.2 can be used to obtain a pos-

teriori estimates of error in energy norm if finite element solutions corresponding

to a sequence of spaces S c S2 c S3 ... is available. Such sequences are naturally
created by p-extensions and can be created by h-extensions also. The a posteriori

use of a priori estimates are based on the following relationships: It can be shown

that

1 UX - UFSI 1p - 11 (6)

where Iip is the potential energy computed for polynomial degree p and 1I d'* fl(asx)

is the potential energy corresponding to the exact solution [7]. If p-extension

is used for problems in category B then the as3 mptotic rate of convergence is

algebraic, that is

HP - H _5 k (7)
NJ

For sufficiently large N the 'less than or equal' sign can be replaced with 'approxi-

mately equal'. This is because (7) is a tight estimate for sufficiently large N. Using

(7) for three finite element solutions corresponding to the spaces Sp- 2 , Sp-1, SP,

the constants k and p can be eliminated and the following relationship obtained:

I - ripII .- IT1Q (8)rI - IP-1_ H- Hp-2 ()

where Q depends only on Np_ 2, Np- 1, Np:

Qe log(Np-lNp) (9)

To obtain an estimate of the exact potential energy ri, the nonlinear equation (8)

has to be solved.
Although this estimator is asymptotically correct only when p-extension is

used for problems in category B, computational experience has shown it to be

reliable and generally accurate in the preasymptctic range and for problems in

category A as well. For problems in category A the estimator tends to overestimate

the error by a small margin. For problems in category B the estimator slightly

overestimates the error in the preasymptotic range. It is highly accurate in the

asymptotic range, but underestimates the error, by a small margin, in the the

C. region of transition from the preasymptotic to the asymptotic range [7,8].
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5. COMPUTATION OF ENGINEERING DATA

FROM FINITE ELEMENT SOLUTIONS.

Having obtained a finite element solution, the problem is to determine the

functionals of interest 0i (irFz), such as displacements, stresses, stress intensity

factors, natural frequencies, etc. so that these functionals are close to their e -. t

values:
I€ (x)- ,( ) - ,1, B)i = 1,2.... (10)

where ri'is some specified tolerance. In engineering computation ri is typically

between one and five percent. There are various methods for computing -Di (,4s)

and there are large differences in how fast *6 (iFE) approaches 40, (9-.x) as the

number of degrees of freedom N is increased.

For example, stresses can be computed directly by first computing the strains'

from iFE, which involves computation of the derivatives of asE, then using the

stress-strain law to obtain the stresses. In the case of uniform or nearly uniform

finite element meshes, stresses computed in Gauss points converge faster than

stresses computed in other points. Such accelerated convergence is often called su-

perconvergence. In many h-version finite element computer programs stresses are

computed only in Gauss points and then smoothly extrapolated to the boundaries

to take advantage of superconvergence. Extrapolation tends to underestimate the

maximum stress, however, which typically occurs at the boundary. In other cases

a priori information about the solution is used by incorporating the functional

form of the solution in the finite element space S [9]. Accelerated convergence can

be achieved also by means of special mapping procedures, such as quarter point

mapping, or by problem-specific auxiliary mapping techniques [10].

It is also possible to compute 0, (Crs) form the virtual work expression. This

involves selection of a virtual displacement function ti such that 4 (iIr) is the vir-

tual work corresponding to to. The specially chosen virtual displacement functions

are called extraction functions. Specifically, denote the virtual work of internal

stresses corresponding to the displacement field .C- due to the virtual displacement

i, by B(il, vj and the virtual work of external forces by F(ii). The finite element

solution, 6FE, corresponding to the principle of virtual work, lies in . and satisfies:

B(i!Fs, v F(v) for all " $(0) (11)
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( where s(°) is the subset of functions in S which vanish on those boundary segments )

where kinematic boundary conditions are prescribed. Suppose that we can write:

4 , (irix) = B (sx, uB,) + Q(tU,) (12a)

where t is an extraction function for -,, Q(tDi) is a functional which is independent

of AEX. Note the similarity with Green's function: If tv is Green's function then

B(CEx, ,) = 0 and the functional can be computed directly from the input data.

The finite element approximation to ,(rx) is:

Oj (C€E) = B (aFB, ,) + Q (t ). (12b)

Therefore, from (12a,b),

O , (i sx) - O, (CpB) = B (ilx - CrE, O,) . (13)

The following a priori estimate is available for the error in 0i:

10i (i1BX) - Oi (irE) 1:5 1 IIUEX - tSFE IB IIZEX - 4511BI (14)

where iEx is the solution of an auxiliary problem, which depends on the choice of

0i and ZFE e S is the finite element approximation to Sx.. Details are available in

[11,12,13]. In many cases it is possible to select t i so that the error JIlix - ZFElIE

is not greater than Iilsx - UFsEis and Oi(ii-) converges to Oj(gsx) at the same

-ate, or faster, than Bjusx - [1I. Thus superconvergence is realized. Specific

case studies have been reported in [14,15,16,17,18].

The gains in efficiency realized by properly chosen extraction procedures are

particularly important for three-dimensional problems where meshing for high ac-

curacy is generally difficult and expensive. Superconvergent extraction procedures

may be the only means by which reliable and accurate :omputation of engineering

data can be made practical.

The a priori estimate of error (15) suggests that adaptive procedures designed

to control the error in energy norm are directly applicable when computing func-

tionals using the extraction procedure. Note, however, that adaptivity for multiple

solutions is involved: Both 116Ex - CFEIIE(n) and IIZEx - iF I E(n) have to be small.
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- - Depending on the goals of computation, there can be many extraction functions

and therefore auxiliary problems.

Extraction methods can be implemented in both h- and p-version finite ele-

ment codes, however the higher rate of convergence of p-extensions and the greater

robustness of the p-version are inherited by the extraction methods and therefore

the p-version codes will perform better.
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6. EXAMPLE: ATTACHMENT LUG.

An attachment lug, typical of problems weakly in category B, is shown in

Fig. 2a and the corresponding mesh in Fig. 2b. The lug is of uniform thickness of

0.5 in. Plane stress conditions are assumed. The modulus of elasticity is 3.0 x 104

k/in2 and Poisson's ratio is 0.3. The goal is to find the magnitude and location of

the largest tensile stress in the neighborhood of the circular hole when a sinusoidal

normal pressure is applied on the inside perimeter of the hole, as shown in Fig.

2a. The pressure distribution T = T,(8) (k/in2 units) is given by the expression:

_L-csa . < 9 <
= I V 2 2 (15)

0 otherwise.

The pressure distribution may vary such that the direction of its resultant (F =

10k), characterized by the angle a, is in the range of ±45.0 degrees.

Generally a lug is part of a larger structural unit, such as a bulkhead in an

airframe. It would be impractical to model the entire structural unit just to find

the stress distribution in the neighborhood of the circular hole of the lug. For

this reason some boundary condition is imposed on the lug along the interface

between the lug and the structure to which it is attached. The choice of this

boundary condition is a modelling decision which, together with the other input

data, determines itEx. The underlying assumption is that the data of interest

are not sensitive to the modelling decision. It is necessary to check whether this

assumption is valid: A mathematical model cannot be considered as reliable if the

data of interest are sensitive to arbitrary modelling decisions.

Two modelling decisions are compared in the following: First it is assumed

that the lug is held in equilibrium by smoothly varying tractions imposed along

the boundary AB. In this case the exact solution is weakly in category B. Second,

it is assumed that the lug is fixed along AB. In this case the exact solution is

strongly in category B. In reality, the lug is elastically constrained so that smaller

deformation is allowed along AB than in the first case but larger than in the )
second.
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Fig. 2a. Attachment lug. Typical for problems weakly in category B.
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Fig. 2b. Finite element mesh for the attachment lug.

6.1. Equilibrium loading.

The lug is held in equilibrium by linearly distributed normal tractions and

quadratically distributed shear tractions applied along AB:
0 5T.= -- cos a + Lsina(y - 3) (16a)
3 3

T =- - y(e - y) sin c. (16b)

These tractions are consistent with the simple stress distributions of the usual

engineering theory of beams. Only rigid body constraints are imposed.

The problem has several weakly singular points. These are points A, B, C, D,

E, G, shown in Fig. 2a. The location of points E and G depends on the choice of

a. To realize the faster asymptotic rates of convergence of p- and hp-extensions,

singular points should be nodal points. It would be inconvenient, even impracti-

cal, to have a different mesh for each a, however. It is now demonstrated through
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( a computati.*nal experiment that if the goal of computation is to determine the )
location and magnitude of the largest tensile stress to within one percent relative

error then points E and G do not have to be nodal points. This loading has sub-

stantial practical importance because it is typical for loadings of pinned structural

connections.

First, p-extension is performed on the mesh shown in Fig. 2b and the relative

error in energy norm is estimated using the procedure described in Section 4.

The relevance of this estimate for this particular problem is that the error in

energy norm is closely related to the root-mean-square eryor in stresses, hence it

is indicative of the average error in stresses [7]. The computations were performed

with the computer program MSC/PROBE. The results, shown in Table 1, indicate

that the relative error in energy norm is under one percent at p = 8.

Table 1. Attachment lug. Equilibrium loading, a =r/.

Estimated relative error in energy norm.

N IIFE I Rel. Error )
~ N (in k) _ (percent)

1 41 1.46368 x 10-2 50.29
2 109 1.89925 x 10-2 17.47
3 177 1.94095 x 10-2 9.61
4 269 1.95218 x 10-2 5.92
5 385 1.95680 x 10-2 3.39
6 525 1.95857 x 10-2 1.57
7 689 1.95891 x 10-2 0.87
8 877 1.95900 x 10-2 0.51

Second, the location and magnitude of the largest principal stress is com-

puted and p-convergence is checked. These computations involve the use of a data

mesh, constructed as follows: Each element in the mesh is related to the standard

quadrilateral element by the mapping:

S= Q(k)= Q7))(, 7) - 1 G_ ,/ +1 (17)

where k is the element number. Each of the intervals -1 _ _ +1, -1 < _ +1

are subdivided into n subintervals, thereby creating an n x n data mesh on the

standard quadrilateral element. The stresses are then computed in each nodal
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point of this data nesh for each element and the location and magnitude of the

largest principal stress is identified with respect to the data mesh. Of course, the

resolution depends on n and the size of the elements. For this example ,n = 10 was

selected.

Table 2. Attachment lug. Equilibrium loading, a = r/6.

Location and magnitude of the largest tensile stress (a1)

Element z y all 0'2 angle
P number (in) (in) (k/in2 ) (k/in2 ) (degrees)

-
1 4 6.616 3.884 19.64 3.87 38.1
2 8 8.067 1.886 19.76 2.83 27.7
3 8 8.067 1.883 22.28 3.59 27.9
4 8 8.067 1.886 22.81 3.51 27.2
5 8 8.153 1.934 22.29 0.95 31.1
6 8 8.153 1.934 22.34 0.33 31.1
7 8 8.067 1.886 22.32 0.33 27.1
8 8 8.153 1.934 22.32 -0.21 31.3

The results, shown in Table 2, indicate that the location of the largest princi-

k- pal stress converges to a point which lies in the vicinity of points (8.067, 1.886) and

(8.153, 1.934). Both points lie on the perimeter of the circular hole. Since the data

mesh is characterized by n = 10, the angular resolution along the perimeter of the

circular hole is 4.5 degrees (0.098 in). These points are very close to 0 = -1r/2 from

the iie of action of the applied force which is shown in Fig. 2a. It is seen that

the location and magnitude of the maximum principal stress are virtually inde-

pendent of the discretization: They change very little with respect to incre ing

p. The stress a2 is the minor principal stress. The angle between the direction of

the largest principal stress and the x-axis is in the last column in Table 2. From

these resiults it is possible to conclude that the largest principal stress occurs at the

perimeter of the circular hole, its angular position is approximately a = -1r/2 from

the line of action of the applied force and its magnitude is approximately 22.3 k/in2 .

Convergence is very fast: Good engineering accuracy is realized at p = 3. However,

to verify that convergence has in fact occurred, extension must be continued for

at least two p-levels beyond the p-level at which the desired accuracy has been

( - reached. In this case p-extension could have been stopped at p=5.
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( Table 3. Attachment lug. Fixed along AB, a = r/6. )
Estimated relative error in energy norm.

N IIuFE! Rel. Error
(ink) (percent)

1 38 1.44166 x 10- 2  50.64
2 102 1.86780 x 10- 2  19.15
3 166 1.91132 x 10-2 11.93
4 254 1.92667 x 10- 2 7.94
5 366 1.93373 x 10- 2  5.16
6 502 1.93673 x 10-2 3.35
7 662 1.93773 x 10- 2  2.47
8 846 1.93822 x 10- 2  1.88

On comparing the results in Tables 1 and 2 it is seen that the error in the

maximum tensile stress is much smaller than the error in energy norm. The error

in energy norm is related to the root-mean-square error in stresses over the entire

domain. Locally the stress can be less accurate or, as in this case, more accurate.

CC S F B

D 
D

Fig. 3. Attachment lug. Contours of the first principal stress, a = 7r/6.

Contour interval: 5.0 k/in2, B = 0, F = 20.0 k/in2 .

A contour plot of the largest principal stress, generated from stress values

computed directly form the finite element solution in the nodes of a 10 x 10 data

mesh per element, is shown in Fig. 3.

6.2. Zero displacement along AB.

In this case the problem is strongly in category B. The computed values of

the strain energy and the estimated relative error in energy norm are shown in

Table 3. It is seen that convergence is somewhat slower, nevertheless, reasonably )
good accuracy is achieved in energy. norm.

-18-



( Search for the location and magnitude of the maximum principal stress, re-

stricted to elements 3 to 10, indicated strong convergence and yielded virtually the

same results as those listed in Table 2. Hence the computed data are insensitive

to both the modelling assumptions and the discretization.

6.3. Cracked attachment lug.

Let us now assume that a crack, 0.5 inches long, has developed in the lug, as

shown in Fig. 4. The same kind of sinusoidal loading is applied as before, however

in this case a = ir/4. The goal of computation is to determine the mode I and

mode II stress intensity factors, respectively denoted by K, K11 . Two extraction

methods, called cutoff function method (CFM) and the contour integral method

(CIM), were used, detailed description of which is given in [14]. The mesh is now

modified so that it is geometrically graded at the crack tip, which is typical for

hp-extensions, however p-extension is used on this mesh. This mesh is comprised

of forty elements.

CRACK J .- .1? .1

Fig. 4. Cracked attachment lug. Mesh detail.

The results given in Table 4 show that the stress intensity factors computed

by the cutoff function method (CIM) and the contour integral method (CFM)

methods converge strongly and obviously, although not monotonically. Greater

accuracy and more nearly monotonic convergence is exhibited by the cutoff func-

tion method than the contour integral method. Both methods yield solutions

which are within the range of precision normally needed in engineering compu-

tations at p =-4. The data for p > 4 merely confirm that convergence has in fact

S- occurred.
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( Table 4. Cracked attachment lug, 40 finite elements. )
p-Convergence of stress intensity factors in ksi,/m units.

p N K,/vi2 K,/V12 Kz/v'i Kzg/v'
(CIM) (CFM) (CIM) (CFM)

1 93 5.335 4.252 -2.010 -1.607
2 269 3.492 3.851 -1.715 -1.866
3 473 3.954 3.836 -1.924 -1.842
4 757 3.731 3.785 -1.818 -1.845
5 1121 3.802 3.779 -1.852 -1.840
6 1565 3.773 3.783 -1.836 -1.841
7 2089 3.789 3.785 -1.845 -1.842
8 2693 3.783 3.785 -1.842 -1.843

( -)
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III

7. NOTES ON IMPLEMENTATION.

From the point of view of implementation there are several important differ-

ences between the h- and p-versions. One of these is the difference in mapping

requirements: In the p-version the size of the elements is not reduced as the degrees

of freedom are increased, hence the geometric description must be independent of

the number of elements. For this reason mapping by the blending function method

is used. In the case of the lug problem the circular boundaries were represented

exactly in the computation of the stiffness matrices and load vectors.

For the same reason, representation of the loading must be independent of

the number of elements. In the example of the attachment lug, the loading was

specified by the formulae (15) and (16a,b). Terms of the load vector were computed

by Gaussian quadrature, using 12 Gauss points for each loaded element side. When

an element is only partially loaded, as in the case of a = i/6 elements 4 and 8

are, then the normal pressure is zero in some of the Gauss points. This causes

some perturbation in the integrand. Nevertheless, as seen in this example, this

affected neither the overall quality of the solution, measured in energy norm,

nor the accuracy of the largest principal stress significantly. The formula is most

conveniently defined in a local coordinate system, rotated by the angle a in relation

to the global system. In this way the orientation of the applied load can be changed

by changing only a single input parameter a.

In the h-versions stresses are usually evaluated at Gauss points only. For

other points the stresses are determined by some smooth interpolation. There is

no advantage in doing this in the p-version. In this example, the stresses were

evaluated on the data mesh directly. No smoothing or averaging was performed.

In fact, at interelement boundaries the stresses were e-aluated independently for

each element. The smoothness of the contour lines in Fig. 3 indicates that there

are no significant jumps in the computed stress values between adjacent elements,

which is another indicator that the solution is of good quality.
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8. SUMMARY.

Mathematical models are reliable if the error measured in the natural norm of

the formulation is small and the data of interest -e insensitive to both the choice

of discretization and the modelling assumptio" .ance of reliability is a sys-

tematic process in which sensitivities to discret) ...ion and modelling assumptions

are investigated. In practical engineering decision-making processes the elapsed

time between a problem being stated and some decision having to be rendered is

generally quite limited, hence investigation of sensitivities is feasible only if the

model is efficient. For this reason reliability and efficiency are closely related in

practical computations.

The use of a priori information about the solution plays a very important role

in assuring the reliability of mathematical models. In connection with displace-

ment formulations four areas of application of a priori information were discussed

in this paper:

1. Proper definition of mathematical models. It was noted that intuitively plau-

(sible reasoning can lead to conceptually flawed models and misleading results.

Some basic knowledge on the part of the analyst about what data are admis-

sible for a given formulation and goals of computation is essential.

2. Proper selection of the discretization is based on a priori classification of

the solution. The important differences between the theoretical (asymptotic)

estimates of performance and practical (preasymptotic) performance was em-

phasized. In p-extensions the desired accuracy should be achieved in the

preasymptotic range. This is possible by proper a priori mesh design com-

bined with a posteriori error estimation and, if necessary, modification of the

mesh.
3. Error estimation. Although a priori estimates give information only about

the asymptotic rate of convergence, they can be used a posteriori to estimate

the relative error in energy norm.

4. Extraction. Engineering data can be computed from finite element solutions

very efficiently through the virtual work expression. This requires proper

selection of the extraction function which is based on a priori information

about the solution.
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Abstract

The paper describes the major aspects of modeling engineering problems

of elastomechanics. It shows various aspects and results on a set of

illustrative examples of 2 and 3 dimensional problems.
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- 1. Introduction

The aim of computational analysis is to describe and reliably predict

physical phenomena of interest. In the engineering sciences the primary aim

is usually to design tools which operate SAFELY under certain (mechanical)

conditions, in certain environments and for a certain period of time.

By computational analysis, ONLY mathematical problems and NOT the reality

can be analyzed. The mathematical problem TRANSFORMS given input data into

Information which is of direct interest and does not add anything new (in

fact its loses some information).

The aim of computation is to reliably obtain certain information in the

range of an admissible tolerance so that it is not unduly influenced by the

computational procedure used.

The formulation of the mathematical problem is usually the most crucial

( part of the analysis. Because of the complexity of engineering analysis and

uncertainties in the available information, the formulation of the mathe-

matical problem is often directly or indirectly stipulated in the design

codes and often (at least in parts) it is also influenced by the particular

(company) engineering practices. These codes change with time and express the

experiences with the technology used. As a typical example we mention the

design code (USAF-MIL-A-83444) used in aircraft components. It is based on

the principle of "non-Inspectable slow crack growth" which should meet the

following demands

a) the life of the component should exceed two design times

b) the residual strength of the component should, after being in service

two design life time, exceed maximal load acting on the component by a factor

of, say, 9/8.
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These or similar principles and other considerations (for example, un-
I

certainties in the input information) lead to the precise formulation of the

mathematical problem and defining the data which have to be obtained as well

as to the admissible accuracy with which they have to be determined.

The basic flow chart of an engineering computaLlonal analysis is shown

in Fig. 1.

1'. PHYSICAL PROBLEM
AND CRITERIA

II
2. BASIC MATHEMATICAL

PROBLEM

!I
3. SIMPLIFIED MATHEMATICAL

PROBLEM

~AND

ANALYSIS OF THE ERRORS

CAUSED BY THE SIMPLIFICATION

4. NUMERICAL TREATMENT

AND

ANALYSIS OF THE ERRORS
CAUSED BY NUMERICAL
TREATMENTI

5 PHYSICAL CONCLUSIONS

OR ENGINEERING DECISION

( Fig.I. The flow chart of computational analysis.
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- - Usually In practice loops are present In the flow chart.

The "reality" is associated with (1). The engineering analysis of the

problem, the aims of the analysis, and the assessement of the quality of the

available data, etc. then yield the precisely formulated mathematical problem

(model) (2). This model is to be understood as a "higher" model which is

identified with reality. Nevertheless we solve usually only a simplified

problem (3) and reliability of its solution is Judged typically in comparison

with (2). In (4) we solve numerically problem (3) and the reliability and

the error of the numerical solution is related to the (exact) solution of (3)

(and not (2) or (1)).

Let us underline that basic and simplified mathematical problem has to

have reasonable mathematical properties, for example the existence of a

solution. The existence of the solution of the "real" problem does not

necessarily mean that the solution of the mathematical problem exists too.

This is because of the simplification which enters into the formulation of the

mathematical problem. Also, if the numerical algorithm p:,ovides numerical

results (possibly reasonable looking), it does not mean that the solution of

the mathematical problem necessarily exists, (because convergence has not to

occur etc.) Obviously, theoretical analysis of the mathematical problem and

comparison of its properties with the expected properties of the reality is

essential part of the reliability of the model.

In all stages we have to relate the numerically obtained solution to the

exact solution of a mathematical problem. The agreement with reality, for

example with experIments, is then related solely to the formulation of the

basic (or possibly simplified) problem. It is essential that the errors of

numerical solutions are completely under control so that the exact solution of

( the mathematical problem is essentially achieved and a possible disagreement
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with experiments Is related ONLY to the mathematical problem itself.

In this paper we will show various concrete examples to illustrate the

basic ideas and results. All the ccmputations in this paper has been made by

the h-p version of the finite element method by the code PROBE (McNeil

Schwendler-Noetic) and STRIPE (Aeronautical Institute of Sweden). These codes

have various error checks so that the numerical results presented here can be

assumed to be exact In the range of accuracy needed for the model conclusions.

2) Problem of the cantilever beam

Consider a problem of a simply supported cantilever beam shown in

Fig.2.la

B

a d

A D

-'___ _ DETAIL

A . . . D

Fig.2.1 The simply supported cantilever beam

Let the basic mathematical problem be the problem of two dimensional linear

elasticity (plane strain) for Isotropic homogeneous material. The basic

unknowns, the displacement u,v, satisfy the usual Lam6-Navler equations of

elastIcity. As the boundary condItons shown in the Fig. 2. Ia. we impose on

BC:T p, Tx = 0, on AB, u = v = O, on ED, E, FA: Tx = Ty = 0 and on

EF(where A < d) Tx = 0, v = b(x-L') where b is such that S T (x-L')dx = 0.
EF
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By .Tx respect to Ty we denoted the tractions. The problem is a model

of the simply supported cantilever beam. The (weak) solution which has flnite

energy exists and is uniquely determined.

Let us now consider the simplified problem when A = 0 and when v = 0

at the point G (see Flg.2.1b) is prescribed instead of the more complicated

boundary condition of the basic problem. Then it is possible to show that the

unique (weak) solution of the simplified problem is the same as the onw when

the condition v = 0 at G is not present. We see that the solution of the

simplified problem is unacceptable. The reason for it is that the displace-

ment under concentrated load is infinite (the Bousinesque solution). Although

the solutions of the basic problem converges to the simplified one as A-40,

the convergence is very slow and so it is inadmissible to consider this

limiting case instead of the original one.

We remark that the point support is standardly used in finite element

computations, i.e. the simplified problem is often numerically solved. Hence

the error of the finite element solution is very large because for a mesh not

extremely refined the canti'- . beam solution without support, i.e. the exact

solution is not obtained. It is possible to show that the finite element

solutic-n converges to the solution for the beam without support as the mesh

size converges to zero. Hence the solution obtained in practice is mesh

dependent. This is of course completely undesirable. It is necessary to

mention that the finite element meshes used in practice (if not adaptively

constructed) are crude and the FE solution does hot show the mentioned effect.

For some numerical analysis and computation we refer to [3].

(
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3) The problem of the built in plate (beam).

.Let us consider the classical problem of an Infinite plate problem (in'2

dimension) which can be formulated as two dimensional (plane strain) problem

in the coordinates xy. The scheme of a concrete example is shown in the

Fig.3.1 where we assume built in (clamped) boundary conditions.

AREA B AREA A 1.0

10 10

Fig.3.1 The scheme of the considered plate.

We define once more the basic problem as the two dimensional elasticity

(problem with P = 0.3 (where we denoted by P the "Poisson ratio") and with

the modulus of elasticity E = 3.10 7 . The built-in (clamped) boundary

condition is modeled by u = v = 0.

The solution exists, and is unique. Assume that the aim of the analysis

are the stresses in the areas A and B shown in Fig. 3.1. Let us further

distinguish 2 cases for the data of interest

a) the bending moment and the shear force

b) maximal stresses and the stress distribution through a cross section.

3.1. The problem of the boundary conditions.

It is obvious that the modeling of the clamped end is an Idealization.

In reality the support is obviously more complex. Hence we have an

uncertainty in the formulation of the boundary condition and the problem

shown in Fig.3.1 can be understood as the simplified one. To analyze this
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problem consider a few configurations which could be expected to lead the same

simplified problem. They are shown in Fig. 3.2.

/ I 1.0 i 1.0ol __________ |t t| tttt t f t t .
0 "_ I, I I # # - 1 .

_____ 0 ,''''
t  1  '' d

14.00 0 .0

'1 -

1 10
U-LU 1.0

1.0 1.
I I I 'I I I I I I I

i~ t # I i~r i T

10 j 10

Fig. 3.2 The scheme of vaious boundary conditions.

In the case Ce) we model the clamped end as the elastically built-in end.

The boundary conditions are then

T = -cv

T = -cwy
where c =108.

The case (f) depicts a still further simplified problem based on the

i Kirchhoff beam theory (strength of material approach). In this case the

i', value of the bending moment in the center is

1 00(3.1) H =of 202 =

Inth cs () emoelth lape ndaste latialybul-i ed



() Assume first that we are interested in the maximal stress ax In the

center of the beam (area A in Fig.3.1). We get then in the case f: a' =

100.

We let the stress - = 100.23 in the case d) (i.e. the case shownx

in Fig.3.1) be the "exact" solution to which we will compare all others.

Table 3.1 shows the results.

Table 3.1. The stresses at the center for various models.

Case 01 Errorx

a 108.46 8.2%

b 109.76 9.5%

c 108.27 8.0%

( d 100.23 0% )

e 120.17 19.9%

f 100.00 0.2%

Table 3.1 shows that simplification of either problem a,b,c leads to the error

about 10% while the simplification of the case d by Kirchhoff hypotheses

leads to error of 0.2%.

We have considered the special case for the ratio d/L = If d--0
20~

(for fixed L), the relative difference between the cases a,b,c, and d goes

to zero. We have then

In the case a):

1,a - Vd

(3.2) ad(d)= x dld +higher order terms.

Io

For d/LL we can neglect in (3.2) the higher order terms. Table 3.2 )
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shows that in fact a (d) = c d with high accuracy.

Table 3.2 . The relative error t d(d) of the case a with respect
to the case d

d/L aad (d)

1/20 8.2%

1/50 3.2%

Let us now consider simplification of the problem d to the problem f.

We have then

d f

df(d) = X d = c d2 + higher order terms.

x

We see that the error of the modeling of the boundary conditions

(is much more significant than the error of the simplification leading to the

Kirchhoff (strength of material) solution.

So far we have computed the maximum of the stress o in the area A.

Here the stress is very "idrately linear through the cross section and hence

when the interest is in the moments, the relative errors mentioned in the

table 3.1 and 3.2 hold too.

We reported the stress in the area A and have seen that the sensitivity

to the boundary conditions is of order 10%.

In the area B the differences in the stresses are much larger. The

stresses are singular (the singular behavior of the solution will be discussed

in the next section). Here we report in the Fig.3.3 a,b,c, the stress in the

cross section in the distance x = d/100 from the boundary. We clearly see

that the differences between the mentioned cases are significant. On the
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other hand let us be interested in the (bending) moment and shear force. Then

using equilibrium condition we easily see that the differences in the moments

are the same as In the center of the beam i.e. as in the area A. Hence

different aims lead to very different sensitivities to the uncertainties in

input data.
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Fig. 3.3 The stresses In the area B.

4) The singularity problem and zooming principles.

4.1 The problem in 2 dimensions.

Let us consider the linear elasticity problem on a polygon domain fl

with the boundary consisting of straight segments r,, i = 1,...,n and

vertices Ai = 1,...,n. By wI we denote the internal angles. Let us

assume that we are dealing with a homogeneous Isotropic material and that on

every segment r a -oundary conditions with analytic data prescribed and

that no volume forc 3 are present. Then the solution is analytic on 6\UA

The solution is singular in the neighborhood of the vertices. Let

rr i+I be the segments meeting in the vertex A Assume for simplicity

that the boundary condition (of standard type) are homogeneous on rir1+1,

13



ri. (X, Y)

r

'Al

Fig.4.1 Scheme of the angle

Then the solution of the problem in the neighborhood at A has the form

(4.1) u ' y c r A + smoother terms
v(x,y) J e I

where (r,e) are the polar coordinates with the origin In AI as shown In

( Fig. 4.1. A are real a complex and Re AI+1I ReAI >0 and I and 0I are

smooth functions in 0. If Ai is complex then we use real and imaginary

parts separately. Coefficients A1 and VV I are given by the geometry (the

angle wi), the type of boundary condition on r , r +1 and the material

properties (in our case Poisson ratio). They are independent of the solution.

The coefficients cI depend globally on the solution (except for special

cases). The structure of the solut.i.on Is well known in the general case, for

straight and curved segments r,, and for general (linear) materials. We will

not go into details. Here we refer instead to [14], (15], (16], (22]. In

[21] a general approach (and a computer code) for computation of Ai, 'L 0

for anisotropic and nonaomogeneous materials is given. Very often the

coefficients ci called stress intensity factors (together with A1, p1 t 0j1)

are the main aims of the analysis (in 2 and 3 dimensional settings).. This Is,

( for example, In the case of design based on the earlier mentioned design code

14



(USAF-MIL-A-83444). The stresses in the neighborhood of Ai are unbounded

when ReAI < 1 provided that c100.

BL.ause in finite element computations the stresses are always finite,

the character of the computed stresses can be misleading. If A1 <1 then

practically always (except in symmetric cases) c1 *0 although it can be

relatively small. Then the large stress can be confined to small area only

(we will see an illustration in a three dimensional problem in the next

section.) Reliable computational analysis always requires to compute these

stress intensity factors. (For methods of reliable computation of the

singular behavior around the corners see references [11, [25]).

Let us now relate (4.1) to the zooming principle. To this end let

p and
K K K

, , v Cg, OCT)

be the zoomed solution. Then we obviously have

U( {- n A, (0)
(4.2) E ci,(= P

and hence functions p Aii(e), pAilp (0) are the parts of the zoomed solution

with the zooming parameter K. Here it was characteristic that the infinite

sector was invariant with respect to the zooming.

Let us consider now another case, namely the case shown in Fig. 4.2. We

can zoom (Fig. 4.2b) the solution at A (see Fig. 4.2a) and get the solution

in the form (4.1) (resp. (4.2)) in the same way as before. The other possi-

bility is to zoom the solution with respect to the parameter d as shown in

Fig. 4.2b. Then up to rigid body motion the first term in the zoomed solution

15



(has the form

(4.3) " = d-lM + T

V(9,-a) (C ,-a) 02CgL)

Here M and T is the moment and shear force at the end of the beam. The

function i', i' I = 1,2 are the functions defined on the domain shown in

Fig. 4.2b.

e/ DETAIL a
/

/p
6 A

r
A d

t L DETAIL b

Fig.4.2. The solution on the zoomed domain.

Coefficient M and T are analogous to the stress intensity factors

introduced earlier. The zooming principles can be used in many cases when

the corner singularity interferes as in the case shown in Fig. 4.2. For more

details we refer to [6].

4.3. The problem in 3 dimensions

13 dimensionswe W I consider a polyhedron instead of a polygon and

the problem becomes more complex. Once more we will consider the case of

isotropic homogeneous maeterial. Along the edges the solution is singular in

the direction which is perpendicular to the edges and is smooth along the

16



edges. Assuming that the (straight) edge is along the axis z, the singular

terms are of the form

u(x,y,z) 1 f
w(x,y,z) =cVN, y, Z) J , z r A{-Q (0C)

where (r,e,z) are the cylindrical coordinates. Functions ari,0i, ae

smooth in 0. There are, in contrast to the two dimensional case, two kinds

of singular function. For the first kind coefficients Ai and func'ions (p,

@i are as in 2 dimensions and = 0 (they are sometimes called bending

singularities). In the second kind we have = = 0 (and i 0) (they

are sometimes called torsion singularities). For details we refer to [151,

(221. The function c i(z) are the stress intensity functions which are smooth

in z (except the neighborhood of the verticles).

In addition to the edge type singularity, we have a vertex singularity.(
Here the singular terms have the form

u(x,y,z) 1 (1) (8")

v(x,y,z) = R A (eE)
w~x, y, z)

where (a,,E) re the spherical coordinates. Functions ViV i have

singular behavior In the neighborhood of ( ,as ) being the coordinates

of the edges. For details once more see [15], [22].

The coefficient A and functions iV , i depend on the geometry,

boundary conditions and material propertier but not on the solution. The

coefficients GI are the analog to the stress intensity factors and depend

(except special case) globally on the solution. The relation between AI

and A(i) governs the singular behavior of the edge intensity factor function

in the neighborhood of the vertex.' The unboundedness of the stresses in the

17



neighborhood of the vertex take place when A)< 1 provided the coefficient

c1 *0. Because of global dependence of c on the solution, c1 *0

practically always (except possible In special case of symmetries). Neverthe-

less c can be small and large stresses can be confined to a small area.

Then the usual finite element solution could Indicate completely wrong

behavior. Hence computation of cI is a necessity to obtain reliable results.

y-DISPLACEMENT
.0

z-EISPLACEMEN

y '

~FACTOCTIUNCAIO

FREE

;4D AID

0

0

TRACTIO FREE

Fig. 4.3. The 3 dimensional domain

RAY 5
RAY 4

RAY 3TORSION INTENSITY
FACTOR FUNCTION

0 ~RAY ?

RAY 34A 

BENDING 
INTENSITY

FACTOR FUNCTION

-. RAYI1

Fig. 4. 4. Location of the rays
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Let us show now two typical examples. Fig.4.3 shows a three dimensional

domain with imposed boundary conditions. Along the marked edge shown in Fig.

4.4 the stress intensity factor functions are present. In the neighborhood

of A solution has vertex type of singularity. In Fig. 4.4 we show the rays

where the stresses are depicted. The first two coefficients Ai are given In

Fig. 4.5a for v = 0.0 and u = 0.3. The stresses on the rays will have then

the form
A(1) -1 + (2R t

= C1R A2 + higher order terms.

-o..RI-A) )

1 (0, 0.3. R.2)- . 0" " (0- A(")

_ o_ _ 0.3, 0.) 5 0 8 /3 
R6 - ))A!2

! /'t -  ""' - RA1 2-A .( ryz 0.3highe

Hence Ihescl o'(O xOO RCAIA)  h behavio Islnerf-ml

" Q.544510,9085-1 I 0.3 10.625510.7852 -6 !% .3, R5)

-8 (01o,, 0.3, R4)1

(o'yO,3, R2 R2)\A -

0.5 1.0 o 2) ,o5 2.0)^,)i
_ _ (~yO.,R2

Ftg. 4.5. The behavior of stresses on the rays.

and

(A2)_A(1))
-R I-A (1  = C +C2R (A - + higher order terms.

R1-A (1)  (A (2 ) _A (1) ) tebhvo sln~ o m
_Hence In the scale -Rx Rtebhvo slna o ml



R. CI and C2 relate to the need to compute two stress singular functions.

Fig. 4. 5 ab depict the stresses on different rays. The Fig. 4. 5ab show well "

gfalso the scales where the large stresses will appear (which Is of the order of

1/100 of the thickness). We also see that the value of v does not signifi-

ntly Influence the behavior of the solution. Nevertheless this is not always

the case as we will see in the next example.

The second problem (which was suggested by K.J. Bathe, (see also [9]) is

depicted in Fig. 4.6.

CLAMPED
SYMMETRY 00
CONDITION

Fig. 4.6 The Bathe's problem

The boundary conditions are shown in the figure. When nothing is explicitly

stated then the associated tractions are zero. Let us consider now the

behavior of the solutions at the edge I-A: for z' = 0.0 and v = 0.3.

The values of the constants A[I are the same as in the previous example.

. Fig.4.7 shows now the stress a- at the edge I-A. We see here drastic
i x

} difference between the stress behavior for p = 0.0 and i' = 0.3. The

t standard finite element analysis will lead to the conclusion that o is

Ibounded on the edge I-A for i' = 0.3 while for i' = 0.0 is large. This

conclusion is of course completely wrong. Let us mention that the strength of

mfor = - and z =0. This value
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is approximately achieved for v = 0.0 for any y (the problem here is

.400
: I i

-350 •
V=00

-300 ..

I I
-250 . -.

-150 - -

-100-- - -
.50 j

I----

0 i I
10-5 10.1 10-3 10-2 10.1 100

- x/d ---

Fig.4.7 The stress o on I-A for v = 0.0 and v 0.3X

y-independent). For v = 0.3, Lt is approximately achieved for y>7d

We see that for a reliable conclusion about the stresses in the neighborhood

of the corners and edges the computation of the stress intensity factor is

essential and any program should always have to be able to provide them

(STRIPE provides them). For more about the problem of reliable computations

in solid mechanics and detailed analysis of Bathe problem and engineering we

refer to [1].

5. The plate problem

The plate (and shell) problem is a basic problem in engineering. As the

basic MathM..tical proble. -c will understand the Lhr'ee dimensional problem

of elasticity on the thin domain

( Analysis of the problems of thi's section has been made by programe STRIPE by
- Dr.-B. Andersson. For more see also [1].
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-- X= {x,y,zI(x,y)rw, IzI <d/2}.

We will assume isotropic homogeneous material.

5.1 The problem of the derivation of the simplified formulation.

There are very many formulations of the plate problems. For the survey

see [20) (23]. The major simplified formulations are the Kirchhoff [K] and

Reissner-Mindlin (RM) formulations. Many results describe the asymptotic

behavior of the solution of 3 dimensional (basic) formulation as d--+O.

These results show that (for example in the energy norm) the 3D and Reissner-

Mindlin solutions converge to the Kirchhoff solution as d--0, see eg.

[12], [191. For a detailed study of the asymptotic behavior of Reissner-

Mindlin problem we refer to [2].

Further there are generalized models based on the projection in the

energy on the space of functions of the form (Kantorovich method)

(5.1) U(x,y,z) = k(Xy)z

k=O

V(x,y,z) = kXy)z
k

k=O

W(x,y,z) = k

k=O

In the case v = 0, the case n = I with (o = 0 and m 0 leads

to RM model. For u>0, n = 1, m = 2, = = = 0 leads to RM model

with singular perturbations. Usually m = n+ 1 is taken, which guarantees

the proper asymptotic rate of convergence. The model based (5.1) will be

called n-m model. In general n and m can be different in different parts

of w. For n,m--)m the solution of (n-m) model converges to 3 dimensional

solution (in the energy norm).
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The form (5.1) leads to a hierarchic family of models. It depends on

k particular choice of the function in z. In (5.1) polynomials have been

used. This choice is optimal in an asymptotic way when d-4O (see e.g.

[121, [26]). Other optimal choices can be considered too [24].

The error of the various models have to be Judged in the relation to

the 3D solution and which data are of interest.

5.2 The problem of the rhombic simply supported plate.

Let us consider the plate shown in Fig.5.1. The simple support can be

formulated as

a) hard simple support

b) soft simple support

Z!

T 4a 1.0 - ,

Fig. 5.1 The rhombic plate

In the case a) we assume on the lateral sides w = 0 and ut . 0 where by

ut w denote the displacement in the directions of the tangent to the boundary

of w (and hence Tt *0), u is free (i.e. T = 0).

In the case b) the only constraint on the lateral aide is w = 0 (and hence

T= Tt = 0). The K-model cannot distinguish between thes. two supports.

Few problems now appear

i) How much do the solutions for the two models of support differ?
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(. ii) Which support does the K-model describe?

iii) How accurate (with respect to the 3D model) are the K and RM models?

Answers to these questions depend strongly on how we measure the error. It is

well known that the major difference between K and RM model is in the

boundary layer. For a detailed analysis in the case when the boundary of W

is smooth we refer to [2].

If we take the energy norm measure of the error and the load uniform on

the upper side of the rhombic plate the relative error in % for the K-model,

and the m = n = 2 model (which leads to the slightly smaller error the PM

model) and for the soft simple support is given in Table 5.1 (3D solution is

taken as exact).

Table 5.1 The relative energy norm error of K and m = m = 2 model for
soft simple support in %

V=O.0 v=0.3

d =0.1 d =0.01 d =0.1 d =0.01
a!_

K (2,2) K (2,2) K (2,2) K (2,2)

90" 39.56 12.57 11.87 3.50 34.52 11.18 9.88 2.94

800 39.91 12.59 12.23 3.57

60* 42.24 12.72 15.46 4.14

400 45.43 13.60 20.50 4.24

30°  48.27 15.41 22.66 4.34 44.68 15.03 18.91 3.68

Table 5.2 shows for a = 90 and v = 0 the error for the hard support (the

3D so'lution with hard support is taken as exact). The error of the 3D solu-

tion with the hard support with respect to the soft support of 3D formulation

Cis 34.7% for d = 0.1 and 11.7% for d = 0.01 For more see [191.
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'Table 5.-2 The ,relative enery norm error for the K and (2.2) model

for hard support in %.

Model d = 0.I d = 0.01

K 20.31 2.03

(2.2) 8.22 0.68

The difference between models eg. K, RM, n-m and 3D model is largest in

the boundary layer. It can be in fact very large.

To illustrate this, we consider the square plate (a = 90, P = 0.0). Let

Qxz and Qyz be the shear forces on the line x = 0.5, 0<y<0.5 computed

from the 3 dimensional solution for d = 0.01 and soft support. They are

shown in Fig.5.2ab. Realizing that the K-model leads to Q = 0, we see that

K-model is unreliable for these data of interest.

0 OZ zx

-2.0 z z1.0 ,-~~0.456 "'

-4.0 0

-6.0-- -2.0 -

-8.0 -- 4.0-

-10.0 8.86 -6.08

-,4.0-- -o0 0.1 0.2 0.3 0.4 0.5
-16.0 -- J 15.36

0 0. 0.2 0.3 0.4 0.5 .......
0.481

Fig.5.2 The shear force Q and Qyz at x=0.5 and O<y<0.05

The K-model approximates relatively well the hard support but not the

soft one. In the larger distance from t,he boundary, the K-model is usually

usable also for the soft support. Although the K-model approximates the hard

support the usual approach is to modify the reaction Q by the derivative of
xz

the twist moment to get the soft support reaction. This leads to a reasonably
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good approximation of Q xz In Fig.5.3 Qxz for soft and hard support with

twist moment adjustment is shown. Nevertheless no adjustment of K-model could

give reasonable values of Qyz'

OZ -zx SAO F UP T

0 0.1 0.2 0.3 0.4 0.5

5.3 The reaction Qxz"

There is a significant theoretical difference between hard and soft

sample support.

In [61 we have analyzed the behavior of the solutions on a regular n-eck

polygons w inscribed in the unit circle. We have shown that for hardn

simple support the solution in w converge to a solution on the circle S
n

but which paradoxically is not the solution on S for the hard simple

support. This happens for K, RM and 3D model. In contrast, in the case of

the soft support, such paradox does not occur. This'shows that the

mathematical problem of the hard support has a property which we would not

expect in "reality" and hence an increased precaution has to be given when

nard support model is used.

5.2 The problem of the solution singularity of the plate models.

Let us once more consider the square plate (a = 900), d = 0.01, V = 0.3

such that the sides O.5<x<.5, y = ±0.5 are clamped (u,v,w = 0) and

other two sides are free. Then in the neighborhood of the vertices the

( solution is singular. In (II], (271 the singular behavior of the RM solution

26



is analyzed. This analysis shows that RM solution has two different

characters of the singularities. Denote by (r,e) the polar coordinates with

center in A = (0.5,0.5). Then for r << d the solution for example the

stresses or moments have the form

M -r CrARMPRM (0)x x

while for r = d, the singularity is as for the Kirchhoff model

o-x9 Cr;K VK (0)

Between these two areas there is a transition domain. The exponents X.,

A satisfy some transcendental equations. In our case

A RM = - 0.241

AK = + 0.0686 +iO.438

(i.e. the stress of K-solution is oscillating). In Fig. 5.4 we show the

4 stress x at the diagonal of the plate in log - log scale. We see clearly

that both types of singularities occur. Other stresses show similar behavior.

J :0 x Stress 0
2X10

3 - - * Asymptctic Kirchheff

/ Singulanty. X- 0.068
I x 0 3 - L , ., + i 0 ,A 3 8

8x10 2

2 "Asymptotic
10 Reissner Mirndlin

2 X 10 2 - - - "i .-

2 RelisnerMindlin 11 Transition 11 Kirchhoff2X10 2

10"s  104  10" 102 10.
-r

Fig. 5.4 Stress o-, of the RM model.

Finally we can compute the character of the moments computed from the 3

dimensional solution. Here we can show that
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Mx z Cr ?L3D(0)

and in our case

A3D = -0.289

We see that the corner behavior is different for these 3 models. This

difference strongly depends on the geometry of the plate and boundary

conditions. For more we refer to [8].

6. The problem of nonlinear elasticity

The nonlinear formulation in the theory of elasticity stems from

a) nonlinear geometry as large displacements, stresses, etc.

b) nonlinear constitutive law.

Here we will address some questions related to the elasticity assuming

static behavior where effects of velocity etc. can be neglected. In one

dimensional case, given the strain c(t) -w <t< w the constitutive law

leads to the stress response o(t)

(6.1)r = Ac

where A is an operator mapping the strains Into the space of stresses.

In the 3 dimensional case, c and o are the strain and stress tensors,

respectively.

Usually the constitutive law In 2 and 3 dimensions is derived from the

one dimensional law by applying various principles as Mises, Tresca,

Huber-Hencky, etc. In one dimension many laws were proposed, see e.g. [28].

The basic laws are kinematic, isotropic hardening and others. Recently the

formulation by Chaboche [131 h bom... popular.

Mathematically it is important that the constitutive law is such that it

satisfies conditions which guarantee the desirable properties of the mathe-

28



matical problem of elasticity where It is used. It is of course also

important that there is not a large difference between observed and predicted

response (based on the constitutive law used).

6. 1 Experimental results

Results of an extensive one dimensional, experimental analysis with the

aluminum alloy 5454 in the H32 condition are reported in [18]. This alloy is

produced (under the same commercial mark) by different manufacturers and is

widely used In engineering.

The analysis in [181 is based on the fact that in engineering the

material is taken from the warehouse and at best the experiments for selection

of the proper constitutive law can be made on samples only (statistical

approach). Hence 84 samples have been taken and analyzed. Among others, the

main questions were related to

a) reproducibility of the response

b) selection of the constitutive law.

Two classes of the strain were considered

I) the cyclic periodic strain (which is usually used in materiai

science).

1i) random strain which Is more realistic in applications.

The main results can be broadly characterized as follows

a) The reproducibility factor QR for the random strain is of order

zlO-15% where

maxIAt) -Bt)I
Q t

R maxA(t) +B(t).
2

Here A(t) and Bt) is the stress response of two different sample to the

( same random strain. For cyclic load the factor Q is of order 7-10%.
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b) For every sample and particular constitutive law mostly used in

practice (as Chzboche, kinematic, Mroz, etc.) the constants for the best fit

were computed. Then the average value of these (84 samples) were computed and

using these constants the constitutive law the factors CR (resp. Cc) were

analogous to QR(resp Q c i.e. we define

maxIA(t) -B(t)I
C R = max[A(t) + B(t)

t 2

Here A(t) is the response for a sample and B(t) is the predicted response

based on the average constants. For the best law (one of them is Chaboche we

get CR z 22-25% and Cc = 16-18%.

For the best fit of one sample we get CR z 8%.

If the set of averaging is small we can get C > 30%.
R

For some laws (in standard use in FE codes), CR> 40- 50%.

In the Table 6.1 we show the 11'1 L 11 11L norm (in psi) and relative error.

1 A7BII La IIA-Bi[ L2
j[A-B[Leo I[A-BI[L 2  L (A-B)/2L2 [1(A-B)/2[IL 2

fd fq 5322 2334 14.4% 12.9%

fd Chabache 8346 2654 22.0% 13.5%

fd Kinematic 11850 3475 32.8% 17.6%

(fd, fq is the label of the sample, Chaboche and Kinematic means response

obtained by the Chaboche resp. Kinematic law). We mention that for

computational purpose, the norm i[.[[ is essential (and not 1[.[1 ).
L L

As an Illustration we show in Fig. 6.1, 6.2, 6.3, the value for A-B (two
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samples) and A-B for character and kinematic law using average constants, for

the random strain.

Jill
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( Fig.6.1 The difference between two samples
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Fig. 6.3 The difference between sample and kinematic law.

[18] analyzes only the one dimensional problem. It is possible to expect

that in 2 resp. 3 dimensional setting the factors will be larger.

The analysis made in (18] indicates

a) It is necessary to analyze the reliability of constitutive laws

derived from statistical sampling.

b) It is necessary to analyze random and not cyclic strains.

c) It is highly desirable to develop a mathematical theory for determin-

ing the constitutive law based on the (infinitely dimensional) identification

problems and to develop a strategies for optimal selections of strains for

experiments. This is especially important for 2 and 3 dimensional settings.

d) It seems that the usual elasticity formulation and computation based

C on the "average" constitutive law cannot give reliable results and other

approaches such as bracketting have to be developed, see also here [101.



6.2 Mathematical formulation of Chaboche law.

We have seen in the Section 6. 1 that the Chaboche law is one of the

laws which fits best the data for the single sample. Therefore we will

discuss it here in more detail.

Although in [131 the law is formulated in an incremental way related to

mechanical interpretation, It can be cast into a system of ODE for the stress

and two (internal) parameter functions, (o(t), x(t), R(t)) for given strain

c(t). In what follows we denote (t) = L-e etc. The Chaboche law is

characterized by 6 constants.

We have

o E, a-(O) = (O) = R(O) =0

= O, h(O) = Cy, c (O) = -*y

( (6.2) =o

Ch =0

t =0

for all trg, where

Me= {te(t) <c(t) <Ch(t), or c(t) = ch(t)

and L0S or c (t) = c(t) and Z0}

L(t) = E[c(a-x(t)) + b(Q-R(t))]
c(a-X(t)) + b(Q-R(t)) + E

(6.3) i) FU E[c(a-x(t)) I (t)
c(a- (t)) + b(Q-R(t)) +E

Eb(Q-R(t)) ;(t)
R(t) = c(a-x(t)) + b(Q-R(t)) +E

h =C(h

t33
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for all t e P+ where

={tIc>O and = h

and

(6t4 = E[c' i-x(t)) + b(Q-R(,t))

(6.4) ( ca+X(t)) +b(Q-R(t)) +E

At =tb(Q-R(t))

c(a+X(t)) + b(Q-R(t)) +E

h -E

C=C

for all t e P_, where

P_ ={tic< and c = c }

Chaboche model is characterized by 6 constants with a physical interpretation.

( a: Kinematic coefficient

c: Kinematic exponent

Q: isotropic exponent

b: isotropic exponent

g: yield strain

E: elastic modulus

The Chaboche law as formulated can be generalized into 2D and 3D formu-

lations. Nevertheless when this is used in the nonlinear elasticity equation

problem, some desirable mathematical properties of the problems (as for

example, the existence of the solution) are not quaranteed. Hence another

formulation which approximate well the Chaboche law and leads to the desirable

properties of the mathematical formulation should be used.

3
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6.3 A proper mathematical formulation of the constitutive law.
.4-.

Let us outline now hare principles and family of constitutive laws

(called gauge method) which guarantee good properties of the mathematical

problems based on them. There are two basic (sufficient) conditions for it.

a) Existence and convexity of the yield surface

b) the normality conditicn

(These conditions are related to the Druckers postulates).

M mLet ace R be the set of internal parameters, c cAcR , A being a

convex set in Rm . Set further o :R (for a two dimensional problem).

Now we will. formulate the law with the help of the yield function. To
R3

this end let F(a-,a), F: R xA--)R be given so that

(6.8a) F is convex and C1

(6.8b) F(0,0) = 0

(6.8c) There exist constants , such that 0<3< 16 F118 F1 <r

uniformly on the set {(o-,)(F(,) = z } for some zO.

Then

(6.9) = Dc iZ tr=

a0

[D DF) TD 1

((3 F)T (a(- F)+(6 F)T(8 
F)

whe(rTe~F)~(8F)o. FI e

S= {tIF(ox) < 0 or

F(C,a) = z0  and (3 F) o-0}
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= {tIF(o,c) =z0 and (S3F)T >_.O}.

0 a'

The Chaboche model could be cast approximately in the above frame using

F(o-, tg) = [.max(F1 (0-,. ), F2 ( , ./)]Q

where

(6.10a) F 1 (,.13) = a1 (-o 2 +)2  ((-( 1) +a ( 3-9 )2 +a4( - 1) +(o-o- ) + <1

(6. 10b) F2 (o"a.13) = b,(a-c 2 )2 + b2(t-.) + b(/ )2 + b4 (g-g - f(-)+2

3

and [ ] the smoothing the operator in the neighborhood of the manifold
F (0, (X, ) = F ,

Fig. 6.4a shows the relation between c and o- for cyclic (sinusoidal)

strain with 50 reversals (25 periods) for the constant computed out of the

experimental data (averages of Chaboche constants).

/

- /" ,'

/ .- .!

I.. / U,

i *.

i . Fig. 6.4' The relation between the strain c and the stress for the law based

on (6.la,b).
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Fig. 6.4b shows the results where, for the constant, we have taken the mean

minus standard deviation (let us mention that the correlation for these

coefficients (see (18]) are of order 0.2). Fig. 6.4c shows the results when

computed from the Chaboche law (see section 6.2) and Fig.6.4d shows the

experimental results for one sample.

We see that the results from the original Chaboche law are well

approximated. In all these data we have assumed that the initial data which

depend on past history have been known. In reality they are not known which

further increases the uncertainties in the available information. The

derivation of 2 and 3 dimensional constitutive law leads to still more

uncertainties because not enough experiments could be made. In [10] the 2

dimensional constitutive law was derived as the limit of the frame made out of

the bars, analogous Cauchy's derivation of linear elasticity.

We have seen that the computation of the problem of elasticity on the

assumption of the knowledge of constitutive law without respecting the

uncertainties leads to unreliable results.

7. A posteriori error analysis of the model,

It is essential to make a posteriori analysis of the error of the

solution of the simpliefied problem when o the data from this simplified

model are used. This can often be made by two sided energy estimates. For

details see e.g. [17].

7.1. Estimate of the error of geometry idealization.

Consider the problem on Qr shown in Fig. 7.1.

/
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(/

f p e 1.0

L~ hebaicmaheatca prbe be the t -lrlatctonfad

the simplified problem is the problem on n0 using E = 1, v = 0.3 (and

r =0). Then by finite element solution we get two stress intensity factors

(see Section 4) c1 = 0.2157 102, c2 = 0.5929 10 . Then the estimate using

~c 1 , c2 (and the form of the singular functions) allows to compute the upper

estimate in the energy norm on fl0 of the difference between the solutions on

fr and Q0 (see [17]). Table 7.1 gives the results together with the true

error obtained by the solution on .

Table 7.1 The estimate and true error of hhe geometry ideal

r Estimate True error

0.1 19.0% 13.2%

0.01 3.5% 3.0%

We. see good effectiveness of the estimate.

7.2 Estimates of the linearization

Let us consider once more the problem shown on Fig.7.1 with r = 0. If

the simplified problem will be understood as the linear problem the strains

and stresses are infinite (see Section 4). If we would consider as the basic
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problem the nonlinear problem, the nonlinearity will occur in the neighborhood

of the corner. We will assume the Hencky model of the nonlinear elasticity

with the governing function

for 0: < : 0

() +l_ 
for

with ye ,1).

Functions c( ) is the function describing the nonlinearity of the material.

Let us consider the problem depicted in Fig.7.1 with E = 106, p = 0.3.

Table 7.2 shows the upper estimate of the relative error mentioned in the

energy norm for various vai6,1r, of , ' For more details we refer to (17].

%0 = 0.01 CO =0.001

Estimate- of Estimate of
relative relative
error error

0.1 0.501 2.76 10 % 0.9 0.8 2.05 105

0.1 0.5001 2.79 10-4 0.9 0.5 4.06 10-5

0.1 0.50001 2.79 10 % 0.9 0.02 5.36 10 -%

0.01 0.501 9.56 10-4 % 0.5 0.8 1.19 10-4

0.01 0.5001 9.62 10-4% 0.5 0.5 2.55 10-4%

0.01 0.50001 9.63 10-4 % 0.5 0.2 3.89 10-4 %

0.001 0.501 3.03 10-3 % 0.3 0.3 1.84 10-4 %

0.001 0.5001 3.07 10-3- 0.3 0.5 4.32 104%

0.001 0.50001 3.08 10 -3 %
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( 8. Conclusions

We have discussed various aspects of reliability without trying to def'ine

more precisely what does it mean. We have seen that the aim is to get desired

data with an assessment of their accuracy. More precisely we are aiming to

get the quantitative bracketts in which the "true" results are. These

bracketts then express the uncertainty of the results caused by uncertainties

in the input data, the (simplified) formulation, the discretization etc.

We can now roughly define the reliability of engineering computations in

the relation to reality.

The computational results furnished with the bracketts are physically

reliable if the physically observed results are in the provided bracketts.

Analogously, (more precisely) we 6an define the reliability of the compu-

tational results in the relation of mathematical analysis.

(The computational results furnished with the bracketts are mathematically

reliable if the exact data of the basic mathematical problems are in the

provided bracketts.

We have seen that the reliability is related to the data of interest and

the definitions what is meant by accuracy (e.g. particular norms) etc.

We have also seen that the mathematical formulation has to be closely

related to the engineering analysis and experimentation. Without it, the

"physical" reliability is impossible to expect.

The mathematical reliability, i.e. the comparison of the obtained results

with the exact data stemming from the basic mathematical problem is always (at

least in principle) possible. This comparison and its bracketting is then the

main goal of the (mathematical) computational analysis.

The reliability of the computational analyses has many features and

bring out many unsolved problems. Nevertheless there are already today many
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ways to get at least partial quant'4tative insight Into reliability of computed

results.
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A Posteriori Error Analysis
In Finite Elements:

The Element Residual Method
For Symmetrizable Problems

With Applications to Compressible
Euler and Navier-Stokes Equations

J. T. Oden* L. Demkowicz* W. Rachowiczt T. A. Westermannt

Abstract

An extension of the element residual method for a posteriori error estimation to
* symmetrizable problems is presented. Applications include compressible Euler and

Navier-Stokes equations.

1 Introduction

The interest in a posteriori error estimation in finite element methods began with a series
of papers by Babugka and his collaborators in the late seventies (see [1] for sample results
related to this presentation, or [10] for a more complete list of references) and resulted in
the first conference devoted to adaptivity and reliability of finite element computations in
Lisbon, 1984. By that time a few generalizations of existing techniques were investigated
including the so-called Element Residual Method (ERM) proposed independently by Bank
and Weiser in [3] and Oden and Demkowicz in [6, 11]. Recently, in [12], the method was
extended to arbitrary, combined h-p approximations and compared (favorably) with other a
posteriori error estimation techniques in the context of a model elliptic problem.

As current interest in adaptive methods extends to problems in fluid dynamics, the
natural question arises as to whether the method can be extended to handle more general

*The Texas Institute for Computational Mechanics, The University of Texas at Austin
'The Computational Mechanics Company, Inc.



-[ . problems, including those of compressible gas dynamics. In particular, many basic issues

arise in extending these methods to nonlinear, unsymmetrical operators, such as, for example,

the choice of a norm to be used in place of the energy norm that arises naturally in the context

of elliptic problems ([13]).

In this paper, we propose a generalization of the ERM to symmetrizable problems which

includes such problems of interest as the time-step-dependent boundary value problems

resulting from the time discretization of the Euler or Navier-Stokes equations. The natural
norm is then identified as the linearized entropy corresponding to a particular solution vector
(steady state solution for steady state problems).

The idea of symmetrization can be traced back to the works of Friedrichs (see, e.g., [7]).

Recently, the relationship of symmetrization to the notion of entropy functions (see [5] and
references therein) for the Euler equations (see Hughes, et al. [6]) and for the Navier-Stokes
equations was established.

The numerical examples presented in this paper are based on the time discretization
schemes for Euler and Navier-Stokes equations presented in [4, 5].

2 Element Residual Method

Given a domain fl C RN (we assume N = 2 for notational simplicity) we co-isider a general
variational boundary value problem in the form

Find U E X such that (2.

B(U, W) = L(W) for every W E X

where

X = Hl(n) = H'(Q) x ... x H'(Q)

n times

B(U, W) = Bj(Ui, Wj) (2.2)

L(W) = E L(Wj)

2



with the bilinear forms B'1 and linear forms L defined as (omitting superscripts for nota-

tional convenience)

2 au aw 2 &12u9
B(uw)akO bk _W + _ ju -- + cuv dx

_ Oxk e=2.
bk-tv+ ~de 8 ~ J(2.3)

+ b, au ww +1u(W+C ds
1 0  + T Os j

L(w) = fw+.gt-a'-" dx
in =1 ext

(2.4)

+ j f~w ds

For each pair of indices ij = 1,... ,n, akt, bk, di, c, f, gt are functions specified in S and b,,
d,, c,, f. are functions specified on the boundary Of. The normal and tangential derivatives

on the boundary are defined as
Ou Ou Ou

--p + x2 

'Ou _Ou 
Ou

-(-n 2 ) + -ni
OS = Ox2

where (n, n2) are components of the outward normal unit vector n.

Systems cf type (2.1) include not only clazsical elliptic equations of second-order but
also arise naturally as "one time step problems" from different time discretization schemes
applied to parabolic or hyperbolic equations. The boundary integrals in (2.3) permit the
implementation of different boundary conditions (including Dirichlet boundary conditions
via the penalty method).

Replacing X in (2.1) with a finite dimensional subspace Xhp of X we arrive at the
approximate problem

Fir ' Uh,p E Xh., such that

B(Uh,p, W) = L(W) V W E Xh,p (2.6)

indices h and p refer here to the use of an arbitrary h-p adaptive finite element (FE) meshes,
with locally varying mesh size h and spectral order of approximation p extensively studied
in [12).
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It is our goal to propose and investigate here a general method for estimating the relative
residual error corresponding to (2.6). More precisely, considering the enriched space Wh,p+1
corresponding to the same mesh but with local order of approximation uniformly increased
by one, we define the relative residual error as

IB(Uh,p,, W) - L(W) Isup (2.7)

wVXh,p+, IIWII

The choice of norm IIWII is unfortunately not unique. Two important special cases are,
however, of interest: the symmetric case, when B is symmetric and positive definite, and the

* symmetrizable case when B can be made symmetric by an appropriate change of variables.
t

Symmetric Case

When the bilinear form B is symmetric and positive definite and the energy norm

IIWIllE = B(W, W) (2.8)

is selected in (2.7) the residual error is equal to the relative error between Uh,p and Uhp+l,

*, the FE solution corresponding to the enriched space and (see [11]) measured in the energy
norm.

sup IB(Uh,p, W) - L(W)I = IUh,p - Uh,p+lHE (2.9)
w ,x%,+, II WIlE -

The principal idea behind the proposed error estimate is to interpret (2.9) as a variational
formulation of an elliptic problem, transform the bilinear form B into the typical form for
elliptic problems, and finally apply the element residual method presented in [12].

Formally, we proceed as follows:

Step 1: Transform formulas (2.3) and (2.4) into the typical form for elliptic equations.

B(u,w) 2 O9U OwW) o 2_. akt- "10 k,1=1 aztOz ,

+ E(bk-d)-w+ (_C-- ')uw dx
k1=  1  1,j (2.10)

b. sw + d.- ( 4 ICS + fdnuW ds

ax=1,,., so(,( ,4



Step 2: Apply the element residual method to the modified bilinear and linear forms result-
ing in the estimate

JjUh,p - Uh,p+,l1E l E--- ( IEPKII,K (2.11)

where the error indicator function WK is the solution to the local problem

Find K E XhP+1(K) such that

BK(K, W) =

2 . u

- E~ E x - E-b -dj

i=KlL d k ,=1 I k=1 kIui ouj

LKCl 4 i+jn2,'jU' wd
__I (2.12)

-dcuj- u w

-=, [O8 w' + Os, o--7+ }1 JJ

for every W E X0,hp+(P)

Here X°,p+I(K) is the kernel of the h-p interpolation operator defined on the ele-
ment enriched space Xh,p+ (K) or the so-called space of element bubble functions
(see [12] for details) and the element bilinear form Bic is defined as the element con-
tribution to (2.10). Finally, the symbol [ I denotes the average flux defined along
the interelement boundary and evaluated using both the element and the neighbor-
ing elements values of derivatives and coefficients a (if they are discontinuous).
The element energy in (2.11) is defined using the element bilinear form Bi.

Step 3: Integrating by parts, transform the element bilinear form and the right-hand side
of the local problem into the form consistent with the initial formulas for B and L.



We arrive at the following formulas
n

BK (v,W) = E B'jo ', w')
n (2.13)

LK(W) = EJL4(wj)
j=1

where

BKQO, W) 2 akI--0 W+ Zbk -w+Z2 dep- + a w~ dx
k'1= k=1 f=J

+ JE\a-- gtnt tpw ds

f lb- s w + d,,a + ww w} ds
+ OKnOl a&s S (2.14)

LK(W) = g fwa-ge ) dx

-I.KXal {Zgn) w ds

+ jKO fswds

The final form of the local problem is derived as follows:

Find WK E Xhp+,(K) such that

BK( PK, W) = LK(W) - BK(Uh,p, W) (2.15)

+ = k\O l i kI a~t I j ]wds
Nonsymmetric and Symmetrizable Problems

Formally, formula (2.11) can be used for nonsymmetric problems as well, as long as the local
element bilinear forms BK are positive semidefinite, i.e.,

BK(Vo1 , pjK) > 0 (2.16)
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This happens if the symmetric contributions to BK dominate the unsymmetric ones (result-
ing usually from the first-order terms). The global bilinear form B is then automatically
semipositive and, with the correct bounde"ry conditions, it is positive definite. This guaran-
tees the well-posedness of the problem.

Another interesting case is when the bilinear form is nonsymmetric but it is symmetrizable
in the sense that a matrix-valued function Ao(ax) exists (the so-called symmetrizer) such
that a new bilinear form B defined as

B(U, W) = B(U, AoW) (2.17)

is symmetric.

If, in addition, the symmetrized bilinear form B is positive definite, then the error esti-
mation technique can be extended to this case as well.

Remark: Note that in this case the original bilinear form satisfies the inf-sup stability
condition

inf sup IB(U, W)I > a > 0 (2.18)
liUii= Woo 11W11

(It is enough to take W = AoU). I
Introduction of the symmetrizer does not effect the construction and solution of the local

problems. It only helps identify the norm for the space Xh,,+l in (2.7) and affects the
evaluation of the error estimate. Using the same definition of element bilinear and linear
forms BK, LK, we proceed as follows:

Step 1: Use the orthogonality of the residual to the Xh,p space,

B(Uh,p, W) - L(W) B(Uh,p, i) - L(7k) (2.19)

where

1/ = W - Ih,pW (2.20)

where Ilh,p denotes the h-p interpolation operator (see [12]).

Step 2: Decompose the bilinear and linear forms according to formulas (2.10) introducing
the average flux interelement boundary terms

B(Uh,,, W) - L(W)

- BK (Uh,p, 'O) - LK (4')+ n I2\f ak~ ijOP'ds (2.21)
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Step 3: Introduce the solutions to the local problems

B(Uh,p, W) - L(W) = Z BK(W., V)K) (2.22)
K

where abK is the restriction of 0 to element K.

Step 4: Introduce the symmetrizer and use the Cauchy-Schwartz inequality for the sym-
metrized form to estimate the error

B(ETh,pW) -L(W) = BK(s(OK,AoAo1 bK)
K

--'j-FBK (WKs', AVoK~I) <E B(W, WOK) 1 K (Ao p% I Ao' Og) 1 (2.23)
K K

Here C = maxK CK where for every element K, CK is identified as the norm of
(I - IIh,p) operator with respect to the element energy norm defined as

IIWIIE,K = BK(Ao'W, W) (2.24)

(see [12] for a detailed discussion of C). For undistorted meshes C is close to
one (independent of the order of approximation!) and in practical calculations is
neglected.

Identifying the global energy norm for W in (2.7) as the sum of (2.24) we arrive at
the final estimate of the form

sup W)(W BK(PK , AoK )] (2.25)

3 Examples of Symmetrizable Problems

Linear Diffusion Problem in "Momentum Components"

We start with a model elliptic system of linear elasticity equations

[ 9 ' r /a f

+- - (3.1)

a r [ OX1 + (2ys + )ul
[X2 8O2]
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with (for simplicity only) Dirichlet boundary conditions

Ul = f1 , U 2 = U2 on 0a (3.2)

Above, f = (fl,f2) is the body force vector and y and A are the shear and bulk viscosities.

Multiplying (3.1) by a test function v = (vI, v2) and using the penalty method approach for

(3.2) we arrive at the classical variational formulation in the form

Find u E X such that

B(u,v) = L(v) V vE E X

where X = H'(fl) and

2

B(u,v) = B'j(u, vj)
=(3.4)

2

L(v) = L3 (vj)
j=1

and

B. B(u , vi) =j(2i +A) u- 2iv + y Ul OV, ds
{ ax, Or, OuX2 19X2"

+ -ulv ds

B 12(U2,VI) u2 LVI +A____v d
is, +9X 1 9 2 '-1

B'2 (u2,vl) = J fa ~ O x

B2 1(u,,v) = / Ou, Ov 2 + dxOx2  8X 1 Ox 1 1X2  (3.5)

B 22 (U2, V2) =U j 0 2  + (2z+A u2 Lv dx
Ox Ox, OX 1X 2 Ox 2

+ -u 2v 2 ds

Ll(v,) IfIv~dx+1 I-i,v~ds
in an 6

L2 (2) jf 2V2dx + f -ft2V2ds

(
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Obviously, the bilinear form is symmetric and positive definite.

Strange as it looks, we may be interested in solving (3.1) in terms of new variables

mi = pui (3.6)

where p = p(Xl, X2 ) is a specified, continuous function. A situation like this happens when
the compressible Navier-Stokes equations in conservative variables are discretized in time by
i neafis of the operator-splitting approach.

Substitution of ui = 1/pmi into (3.1) and consequently into the variational formulation
results in an unsymmetric formulation due to the presence of first-order terms as

Ou_ 1 Omi 1 Oap
o - (3.7)

Obviously the symmetry of the problem can be recovered by making an identical substitution
for the test function, i.e., introducing the symmetrizer of the form

Ao= P (3.8)

P

Taylor-Galerkin Method for Euler Equations

Consider the compressible gas dynamics equations in the form

Ut + - F'(U) = 0 (3.9)
Oxi

where U is the vector of conservative variables (density, momentum components, energy)
and F i are the Euler fluxes (algebraic functions of U). Starting with the second-order finite
difference formula in time

U~t + A¢, t2

U(t + At) - -- ,Utt(t + At) = U(i) + AtU,,(t) + O(At 3) (3.10)

we use the original equations (3.9) to represent the time derivatives in terms of spatial
derivatives and arrive at a simple time step problem of the form

U+1 At 2 -1 0 ( n + At ( (3.1
/. -- - kAeUt -U3

2k,1=1 ak Oxi)7x

where the Jacobian matrices Ak = pk are evaluated at U n .

1
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Multiplying (3.11) by a vector-valued test function W, integrating over fl and integrating

by parts we arrive at the variational formulation of the form (2.1) with the bilinear and linear

forms defined as follows

(Un+ 1\ W w"Tunl At 2 2 (W\ T e9un±l

k,1=1

+ boundary terms

L(W) = WTUn + At ( K) F k(Un)}Idx (3.12)

fail fAWT(E r(Un)nk) ds

The form of boundary terms present in the formula for the bilinear form depends on boundary

conditions (see [5] for a detailed discussion).

The formulation is nonsymmetric. However, it is known (see [7, 8]) that there exists a

symmetrizer Ao = Ao(U) (Hessian of the entropy function for Euler equations) such that

1. Ao=AT >O
( (3.13)

2. (AoA )T = AoA > 0(

Based on (3.13), one can easily verify that (with a proper treatment of boundary conditions)

the bilinear form
B(U, W) = B(U, AoW) (3.14)

is symmetric, provided the derivatives of the symmetrizer A0 are negligible, i.e.,

a A-A0- 0 (3.15)

The explicit formula for the symmetrizer is given in Fig. 1.

Operator-Splitting Method for Navier-Stokes Equations

1. The Convection Operator

(E(t)Uo) () dof U(X, t) (3.16)

(
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p OP 1 1 )

P t

I i+ PT2 UV UP

Sym.

t p

U 2 +v 2L2 +2 v

where , = p 2t with p the density, u and v the velocity components, and t the internal

energy (per unit volume).

Figure 1: The symmetrizer.
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where U(x, t) is the solution to the system of Euler equations (transport step)
" " 2

U,, + F'(U),, = o (3.17)
i=1

with the initial condition
U(, 0) = Uo(X) (3.18)

an. appropriate boundary conditions.

2. The Diffusion Operator
(H(t) Uo) (x) 4-'- U(., t) (3.19)

where U(x, t) is the solution to the system of equations (viscous step) in the form

U - Z K'j(U)UJ (3.20)

with initial condition (3.18) and appropriate boundary conditions.

Explicit formulas for the viscous fluxes Fi I K21 U, and the viscous matrices K,,

can be found in [4].

Two compositions of the operators H and E may be considered, a two-step splitting of

the form
G(t) = g(t)E(t) (3.21)

and a three-step Strang procedure of the form

S(t) = H @) E(t)H G)(3.22)
It can be shown that the first procedure is of first-order while the second is of second-order

in time, i.e.,

IG(t)Uo - U(x, t) I< c(X)t 2  (3.23)

IS(t)Uo - U(Xt)l < C(X)t 3

where U(x,t) is a solution to the full Navier-Stokes equations with initial condition (3.18)

and c(o) is an unknown function of x. Practically speaking, the solution of a single time

step problem breaks into two fractional steps for the first-order splitting and three for thc

second-order splitting methods. The transport step reduces to the Euler equations and
is solved using the Taylor-Galerkin method. The form of the differential equation's (3.20)
defining the viscous step leads to two simple observations:

(
"- 13



* The density p remains unchanged in the viscous step, i.e.,

p n+ 1 = pn (3.24)

* The remaining three equations can be decoupled. We first solve a system of two
equations for the momentum components mi

2

mi't = D-Trj),, (3.25)

and then a single equation for the total energy e

2

e't= Erijuj + qj (3.26)
j=1

To affect the decoupling, the boundary conditions for (3.25) must be formulated in such a
way that they do not contain energy terms.

As a starting point to solve both (3.25) and (3.26), we accept a first-orde finite difference
formula of the form

U(t + At) - flAtU,t(t + At) = U(t) + (1 - /3)AtU'J(t) + O(At 2) (3.27)

Note that for /3 = , (3.27) is of second-order and reduces to a Crank-Nicholson scheme.

Replacing the time derivatives with spatial derivatives in (3.25), (3.26) is approximated
with a system of two equations of the form

2 1
n+_ n +(1(3.28)

i=1 i=1

Equations (3.28), if rewritten in terms of the velocity components, reduce to a system of two
symmetric, elliptic equations. Unfortunately, in order to comply with the conservative form
of the equations, (3.28) must be solved in momentum components.

As a next step, equations (3.28) are linearized by evaluating the viscosities / and A (not
the whole viscous matrices K' j ) as functions of Un rather than U n II. Once the system
(3.28) is solved, one proceeds with the energy equation. Combining (3.27) with (3.26) gives
a single equation of the form

+ I- /At + n( r+nu'+ le ij j + 0 +
e + 2 ( (3.29)

= "+ (1 -3)/AtZ
=4 j=1 ,+

14



which, when rewritten in terms of temperature, (3.29) takes the form of a single, elliptic
equation. In their variational formulations neither (3.28) nor (3.29) result in symmetric
problems but in both cases the bilinear forms may be symmetrized using the symmetrizer
(3.8) for momentum equations and Ao = 1/p for the energy equation.

Let us notice finally that had we not decoupled the momentum equations from the energy
one, the same symmetrizer A0 as for the Euler equations could be used (comp. [8]).

4 Numerical Examples

In this section, three example problems using these techniques of error estimation are pre-
sented. The results take the form of plots of the error estimates and effectivity indices as
well as global effectivity indices and standard deviations. These quantities are defined as
follows:

IK = Ilell, (4.1)

where -tK is the effectivity index for element K, 0K is the estimated error and jlletljK is
the actual element error in the coarse mesh approximation (comparing the coarse mesh
approximation with either the analytic solution or the approximate solution on a mesh
of uniformly increased polynomial order). Additionally, we introduce a discrete measure
(weight) WK defined according to

WK.,,-- iellI2 (4.2)

the global effectivity index becomes:

Il2 02 (-- i-K (4.3)
11je I IH UjJ12  K

Now classical statistics suggest a standard deviation o, (with respect to the measure) as a
method to quantify the ability of the estimates to predict an appropriate distribution of
error. The standard deviation is defined as:

2  ( _Y2)2 WC (4.4)
K

In order to eliminate any global constants that may be missing from our estimates, we
normalize the element effectivity indices by dividing them by the global effectivity index:

S 0- OK 7-(4.5)

t1jeIll i,"
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which results in a standard deviation defined according to:

-2= (4.6)
K

Example 1: Linear Elasticity Step in "Momentum Components"

The problem discussed in Section 3 was solved on the L-shaped domain shown in Fig. 2
with homogenous boundary conditions. The fluid viscosities were chosen A = 4.0, A = 1.0
and fi and f2 consistent with the analytic solution:

U1  r sin 0(1 - x2)(y - y3 )

ul=r2 + 0.01 (4.7)
U2 =r 2 +0O.01 cos 0(x m 3)(1 - y2)

(where r and 0 are defined in Fig. B.1). Additionally, we have chosen:

p = (1.1 - xi)(1.1 - x 2) (4.8)

Figure 3 shows plots of the estimated errors and normalized effectivity indices corresponding
to a mesh of 48 quadratic elements. For this problem the global effectivity index was 1.276
and the standard deviation 0.537. Notice that the range of effectivity indices shown is 0.0 to
2.0. (Elements with an effectivity index greater than 2.0 are assigned the darkest shade.)

Example 2: Flow Over a Blunt Body Problem for the Euler Equations

We used the Taylor-Galerkin method described in Section 3 to solve a 11ow over a blunt body
problem with Mach number Ma = 6. Figure 4 shows the density contours of a steady-state
solution obtained on a uniform mesh of 16 x 16 linear elements. Figures 5a and 5b present
distributions of error indicators OK and normalized :ffectivity indices K. Since the exact
solution to the problem is not available, the exact errors are not known. For this reason
we computed the effectivity indices 7K = OK/IIIe[IK, using instead of true errors Illel[IK,
the errors understood as a difference between the actual finite element solution and the
solution obtained by performing one time step on the mesh enriched to quadratic elements.
The global effectivity index for this problem was 7 = 7.7 and a standard deviation of local
effectivity indices 3 = 1.67.

Example 3: Flat Plate Problem for the Navier-Stokes Equations

The operator splitting algorithm was used to solve a viscous flow past a flat plate. The
problem was solved for the following data:

16
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Figure 2: L-shaped domain used for linear diffusion step problem.
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2.56 E-3 ~''~~5.16 E-1I
a) Error Estimates

0.0 2.0
b) Normalized Effectivity Indices

Figure 3: (a) Error estimates and (b) normalized ef, ty indices for linear diffusion prob6-
lem. Global effectivity index: -y = 1.276, standard deviation: o = 0.537.
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PROJECT: DECK400R ADAPT HT-P/2D

0.9425

MIN=O.0012359
0 MAAX=0.9332073

ERROR=2. 1418229
--- D.O.F=- 289

Figure 5: (a) Flow over a blunt body. Distribution of error indicators.

PROJECT: DECK400R ADAPT 11-1'120

3 -

2 -

MIN=O. 166661

0 MAX=8.45790W4

____ ___ ___ ____ ___ ___ ___ ____ ___ ___ ____ ___ ___ _ j D.O.r- 289

Figure 5: (b) Flow over a blunt body. Local effectivity indices.
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* Mach number, Ma = 3

* Reynolds number, Re = 500

* Free stream temperature To = 801K

* The temperature of the plate, T,, = 2280K

The finite element mesh is shown in Fig. 6. We applied initial h and p refinements to

introduce appropriate layers of small higher order (up to p = 3) elements along the plate to

resolve the boundary layer phenomena. Different shadows of gray in Fig. 6 correspond to

different orders of approximation. Elements with only their sides shadowad are anisotropic

elements with higher order approximation in the direction perpendicular to the plate only.

The solution of the flat plate problem in terms of contours of density is presented in Fig. 7.

Since the viscous splitting algorithm consists of three linear steps, we performed error

estimation for all three steps. Similarly, as in Example 2, exact errors involved in effectivity

indices analysis were replaced by the errors obtained as differences between the actual so-

lutions of Euler, momentum and energy steps, and the corresponding solutions obtained by

enriching the order of approximation by 1 throughout the mesh, and performing one Euler

or momentum, or energy time step, respectively. These differences were then measured in

energy norms defined by bilinear forms associated with these steps, symmetrized as described

.-. in previous sections.

Figures 8, 9, and 10 present distributions of error indicators and local effectivity indices

for the three steps of the viscous splitting algorithm. The global effectivity indices 'Y and

standard deviations of local effectivity indices, F, in this problem were as follows:

Euler step -7 = 18.7 , 6.2

momentum step 7 = 25.9 , 5.8

energy step 7 = 3.8 , = 7.4

5 Conclusions

The element residual method has been extended to a general class of symmetrizable varia-

tional boundary value problems. The concept has been successfully applied to estimating the

error resulting from spatial finite element approximation for steady-state solutions to both

the Euler and Navier-Stokes equations obtained using Taylor-Galerkin and operator-splitting

methods.
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PROJECT: DECK. R DENSITY ADAPT H-P/2D

0.52 1 08251.12 1.25 1725 MAX=1.679746

Figure 7: Flat plate problem. Density contours.
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PROJECT: DECK-.R ADAPT H-P/2D)

MIN= 0.389E-05
_____________________________________________________ MAX=O.0302722

10 '': 77-1 144OO ERROR=.0961987

Figure 8: (a) Flat plate problem. Error indicators for the Euler step.

PROJECT: DECKR ADAPT H-P/2D

MINO.5563

I~ _________

0 1 2 3 4 JD.O.F= 396

Figure 8: (b) Flat plate problem. Local effectivity indices for the Euler step.
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-PROJECT: DECKR ADAPT H-P/2D

MIN= 0. 183E-05
MAX=O.004563 1

I [kk~~L~~ERROR=0.015444
0 '0.00105 0.00245 0.00385 10.0049 D.O.F= 396

Figure 9: (a) Flat plate problem. Error indicators for the momentum step.

PROJECT: DECK...R ADAPT H-P/2D

MIN=O.0472422

___________________________________________________MAX=12.230761

0 234 D.O.F= 396

Figure 9: (b) Flat plate problem. Local effectivity indices for the momentum step.
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PROJECT: DECK.Y ADAPT H-1121)

MIN= 0.21213-06
MAX= 0.3 16E-03

I I0* - ERROR=O0.0010473
D.O.F= 9580 0.075 0.15 0.25 0.325

Figure 10: (a) Flat plate problem. Error indicators for the energy step.

PROJECT: DECK -R ADAPT H-PJ2D

K.*

MIN=-0. 1267583
MAX=29.698877

0 2 468 D.O.F= 396

Figure 10: (b) Flat plate problem. Local effectivity indices for the energy step.
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A Priori Estimates For Mixed Finite
Element Methods For The Wave Equation

Lawrence C. Cowsar 1, Todd F. Dupont 2, Mary F. Wheeler 1 ,3

Abstract

This paper treats mixed methods for second order hyperbolic equa-
tions. The convergence of a mixed method continuous-time scheme for
the hyperbolic problem is reduced to a question of convergence of the
associated elliptic problem. Stability conditions are also derived for a
conditionally stable explicit scheme. Numerical experiments are pre-
sented that verify the theoretical rates of convergence and compare
two of the discrete schemes discussed.

Keywords: mixed finite element methods, second order hyperbolic equa-
tions, stability, convergence

1 Introduction

In a mixed finite element formulation both displacements and stresses are
approximated simultaneously. This approach requires the solution of a sad-
dle point problem. These methods provide higher-order approximations of
the stresses. This property is important in modeling boundary controlla-
bility of the wave equation [10] where accurate forces on the boundary are
essential. In computing Darcy velocities in flow in porous media, one is
confronted with problems with rough coefficients and anisotropies. Numer-
ical experiments indicate that mixed finite element methods out perform
displacement methods [12].

One of the main difficulties of mixed finite elemen.t techniques is that
convergence and stability require compatibility of the approximating spaces.
Discussion of the solvability and stability and the inf.sup condition can be
found in other' papers [4], [6], [7], [3], even some in this 'volume, [2].

'"cpartmcnt -.. athe.atic, Uitivursity of Houston
2Department of Computer Science, University of Chicago
'Mathematical Sciences Department, Rice University
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In this paper we establish a priori convergence results for continuous-
time mixed finite element methods for second order hyperbolic problems.
We address what we feel are essential theoretical results. More precisely,
we show that it is possible to reduce the question of convergence of the
continuous-time scheme to the question of convergence of the mixed method
for the associated elliptic problem. In addition we discuss stability of a
collection of time-stepping schemes. A time-step condition for stability is
exhibited for an explicit procedure. Approximation of initial conditions and
boundary conditions is discussed.

A priori error estimates for Galerkin approximations for second order
hyperbolic equations have been previously derived by Dupont [11] and im-
proved by Baker [5]. Both continuous and discrete time schemes were ana-
lyzed. The estimates of Dupont were based on the usual energy inequality
for the wave equation, and those of Baker can be viewed as being based on
a nonstandard type of energy relation.

In [13] Gev.- i considers mixed finite element methods for the wave equa-
tion. He replaced the wave equation by a first order system, both in space
and time. The continuous-time procedure discussed here is equivalent to
the one he treats. The error estimates presented here are analogues of the
improved estimates of Baker, while the error bounds of Geveci parallel the
continuous-time results of Dupont. The discrete time methods presented
here are different from those in Geveci's paper.

The paper consists of four additional sections. In Section 2, mixed finite
element methods are formulated for both continuous and discrete time. A
convergence result for the continuous-time scheme is established in Section
3. Stability for the discrete time schemes is discussed in Section 4. In partic-
ular we derive a stability condition for the explicit formulation. Numerical
experiments are presented in Section 5.

2 Mixed Finite Element Formulation for Second
Order Hyperbolic Equations

We consider the second order hyperbolic equation

(1) n -- 0 (aj(x)L(x.t)= f(xt), x E Q, t E (0, T],
T\

( 2



with initial conditions,

(2) u(x,0) = uo(X), xE lf,
au

(3) -(x,0)= Ul(X), x E S,

where fl is a bounded domain in Rn witi boundary On/. For convenience we
assume homogeneous Dirichlet boundary conditions:

(4) u(X, t) = 0, x E 091, t > 0.

We assume that the functions aii and f are uniformly bounded and
measurable. In addition we assume that the spatial operator is uniformly
elliptic in the sense that there exists positive constants a and 6l such that

() an <n ,n

ai i,j----1 i=1

We adopt the following notation: Let H(2; div) be the subspace of
(L2 ( 2))n defined by

(6) I(n;div) = {zldiv z E L 2 (n)}.

Let (.,.) denote the L 2 inner product,

(7) 0,)--/ O(x)¢O(x)dx, 0,0 E L 2(n),

(8) II 1= (0,0) 2.

For s = 0, 1, ... denote by Hs(2) the usual Sobolev space of real-
valued functions with s derivatives in L2(!Q). Also H-(a) is defined as the
completik.t of COO() with respect to the norm

(9) II € II-i= sup I(, V)l

For definitions and the relevant properties of these spaces, we refer to [1],
(14], [17].

For II, anormed space with norm IIH and € : [0,T] H sufficiently
regular, the following norms axe defined:

3



T
(lO 11 ( -t) 1 t p  <

(10) 11 IILP((O,T);H) = sup jI dtt1II .

O<t<T
Before defining a mixed finite element procedure we rewrite (1) in the

following weak formulation [9]

(12) ( 02,x) + (div z,x) = (/x), X E L2 (f ),

(13) (A-1 z, v) - (u, divv) = 0, v E H( Q, div),

where
(14) = -AVu.

Here we derive a nonstandard "energy inequality" for the solution of (1).
This energy inequality is motivated by Baker's work [51 and is used in the
analysis of the mixed method. It also sheds light on the 'proper choice of the
initial conditions. Define t
(15) O(x,t) = u(xs)ds,

(16) ¢p(x,t) = jz(x,s)ds.

Thus,

(17)02 U
Ot2  9t

ft 02U+ 1(18) = -+ u.

Hence

(19) 2j rt02uX,
(19) - V.AV = o (At(x 's) - V. AVu)ds + ul

= f(x, s) + Ul

+ U1 .

Note that (12) and (13) become

(20) (Tt2,x)+(divO,x) = (O,x) + (u1,x), X E 2 (S2),

(21) (A-O,v)-(O,divv) = 0, VEtI(fl;div).

(- 4



Taking the L 2 inner product of (19) with 86 gives

(22) T ( 0€ j =0€

at dt

Integrating (22) from 0 to T, we obtain

(23) 1 112 (T)+ II A2VO Jj2 (T) =11 a t12 (0)+ A V¢ 112 (0)

+2 [- J( -(., t), 0. t)) + (0(., T), T(.,)) + (u, (.,T))

=1I to 11' +2[- j(f(., t), 0(., t)) + (O(., T), T(.,)) + (,¢(., T))].

By the Schwartz inequality and duality, the right hand side of (23) is bounded
* by

(24) c)(ll Uo J2 + 112II .- + II fL2((oT);H-1))
1

+ Z 1I A"VO 112 (T)+ II AVO IIL2((O,T),L2)

Combining (15), (23), and (24) and applying Gronwall's Lemma, we deduce
the following:

(25) II u 112 (T) < at a 112 (T)+ II A V¢ 112 (T)

< C(a)(l Uo III + 11 u, III_1 + II f II22((OT);IH-1)"

For h a small positive parameter we take Wh and V to be finite dimen-
sional subspaces of L2(fl) and H(n,div), respectively. These spaces will
need to satisfy some compatibility constraints. However, for our purposes
we merely suppose that the mixed finite element approximation of elliptic
problems is well posed for these spaces.

The continuous-time mixed finite element approximation to (1)-(4) is
defined as a map from [0, T] into Wh X Vh given by thepair (U(., t), Z(., t))
satisfying

(2) (t-x) + (divZ,X) = (f,x), x E Wh, t> 0,

(27) (A-'Z, v)- (U, divv) = 0, v EVh, t >0.

Q5



We define U(., 0) and 8U(. 0) by

(28) (U(., 0) - o, W) = 0, E Wh,

(29) (,( o) - U,, W 0 , w E Wh.

A family of discrete time mixed finite element procedures can be defined
as follows.

Let At > 0 and tn = nAt. Define

(30) q n = 0(.,tn),

(31) a,,on+ . = (on+1 _ on)/At,

(32) 0t9on = (on+1 - 20 n + n-T1 )/(At)2,
(33) -n,s = Son+' + (1 - 2s)On + on - 1 .

For 0 < s < 1, the s-discrete mixed finite element method approximation
Un E Wh, Z n E Vh is defined by

(34 U1 T-TU-1\

(34) ),X) = (ul,x), X E Wh,

(35) (U',X) = (uo,X), X E WVh,

(36) (OtU ,X)+(divZ,X) = (fn,,,X), XE Wh,n> 0,
(37) (A-'Zn",v) - (Un',divv) = O,v E Vh, n > -1.

For s = 0 existence of the solution to this system is clear, but for nonzero
s the existence of the solution follows from the fact that one can solve the

mixed method problem for the elliptic operator

' 1
(38) - divAVu + 2 sAt

3 Convergence of the Continuous-Time Mixed Fi-
nite Element Method

In this section we derive a priori error estimates for the numerical approx-
.... 4. 271% to (1). In particular we show that convergence of tLe
transient second order hyperbolic problem follows from convergence theory

6

i



for mixed finite element methods for elliptic problems. Define

(39) 1(x,t) = U(x, s)ds,

(40) T(x,t) = j Z(x,s)ds,

where U(.,t) and Z(.,t) by (19) and (24).
We observe that

(41) 5 = U(x, t),

a2 ( f t02U
(42) t-= -U(x,t)= -t2ds + U(., 0).

Integrating (26) and (27) from 0 to t and using (39) and (40) we obtain

(43) 02- ), + (divT,X) = (0,X) + (ul,x), .X E Wh,

( (44) (A-I',v)-( (,divv) = 0, vEVh,

where 0 is given by (19).
We compare the pair (t(.,t), T(.,t)) with (, (.,t)), 1F(.,t)) E I'Vh x Vh

defined by

(45) (div( -0),X)=0, XE W,

(46) (A-(-0),v)-('-O,divv)=O, vEVh,

for t E [0, T], where (0, 0) are given by (15) and (16). Using (20), (21), (45)
and (46) we observe 'that

(47) (')x +(div,X)= (O,x)+ a277 + (ulX), X E W,

(48) (A-',v)- ( ,divv) =0, v E Vh,

where 17 = 0 - .

We also note that 0 = -24 and , = - satisfy

(49) (div(2 - z), X) = 0, X E Wh,

(50) (A-'(2-z),v)-((0'-u),divv)=O, VEVh.

( 7



We see that (0, 7) is exactly the elliptic finite element approximation of
(u,z).

Set

(51) r = - E Wh,
(52) I = It- t EVh.

Subtracting (47) and (48) from (43) and (44) respectively we have

/02r /27, )(53) ,x) + (divi,x) = - (2 X X E Wh,

(54) (A-'ti, v) - (r, divv) =0 , v E Vh.

Differentiating (54) with respect to t, we see that

Combining (53) with X = - and (55) with v =/t we have

(56) 1 d or 12 + d - 1f It)  (a 2 Io r)

Integrating (56) from 0 to T and noting that /L(0) = 0, we deduce that

(57) ]1-r 112 (T)+ 11 d-Il 112 (T)

O t j
or (T a27q or

Ttl 11I2 (0) +2jo I-6--7 IIII T-]11
or ,227 12 1 r2

<I T- I12 (0) + 2 iJ -2 IILI((O,T);L2) +' i IL-((O,T)'L2)

Now

or D77(58) 11 Tt 11 (0) -<ll at" II (0).

Considering- (57) and (58) we see that

159) 1 ((,';L)+1t
(50) I g (,2 + iH A-"1 IILO((O,T);L2 )

( 8



Using (59) and the triangle inequality, one can easily deduce that

(60) II U -u IILO((O,T);L2)

< 3 [il U- U IILO((O,T);L2) + O (u -  IL((OT);L2)]I "0t II'(,T ' •

Theorem 1 Let (U, Z) denote the continuous-time mixed finite element ap-
proximation given by (26)-(29) which approximates the second order hyper-
bolic problem (1)-(4). Then the errors are bounded by (60) where (c,2) are
the elliptic mixed finite element approximations given by (49)-(50).

This result shows that a convergence result for the elliptic procedure
gives a corresponding convergence result for the second order hyperbolic
process. Note that the error bound (60) requires that the elliptic mixed
method approximate a well, and in this sense the bound requires more
smoothness than would be required by approximation theory.

4 Stability of the Discrete-Time Mixed Finite El-
ement Approximations

In this section we derive a stability estimate for the explicit scheme s = 0
in (34)-(37). We suppose the following "inverse assumption": There exists
a constant Co, independent of h, such that

(61) 1I dive 11 -< Cob - II II, 0 E Vh.

Specifically, we have

(62) (OUn, w) + (divZ', w) = 0, w E wh,
(63) (A-'Z-,v)- (Un, divv) = 0, v E Vh.

Subtracting (63) from itself with n replaced by n + 1 and n - 1 respec-
tively, we have

(64) (A-'(Zn+ - Zn-'),v) - (Un+1  Un-', divv) O, VEVh.

Setting w, in (62) and v = in (64) and adding the two

(U U U2At )+(A ( - t ),Z") = 0.

(- 9



Now from (31) we have

I(65) (92U ((nIU)fnU -)

(66) aU+_Un

Now,

(67) (U'
2At

(68) -;(t.T + at

Thus,

(69)a (OUn, 6tUn) + (A-'8,Zn, Zn)

- OUt,'U~ + aOUn-y) + (A--~~,Z~

- =0

or

(70) 2A U' 7 11 ItUn-. 112) + (A-'6tZn, Zn) =0.

We now wish to estimate (A-lbtZ', Zn). With Zn'~ - +Zn e
have

znl- zn1= 2(Zn'I - nj,

(Z+'~ + Zn-) (A

2 4~L~n
Letting 11 . 112 (A-1.. ) we see that

(A-' tZn, Zn) f'~1I - yIz '~ i
(At)2 (A-' (atZn~ +O I Z zn, It~ l- L

(71) 2tvz42 11 IIZn-L 112

_(At)
2 (11 azn' 112 I z-L 112).

4 Ln 
.

( 10



Combining (70) and (71) and summing on n, n 1,...,N, we deduce that

(72) II O 7UN+ jI2 + II 4 I (-t 2 O~zN+ Ia

4= Ij O~u" 12 +11I z" I1 (At) 2

From (63) and the inverse property we have

(73) II OZN' + 112< (--- II oUN+' IIi D9ZN+ 11.

Thus,

(7) (At)2 11 IiZN 1123< (02At'2 11,U+112
(7,4) 4a- 4 (T

Substituting (74) into (72) we obtain the following stability result.

Theorem 2 The explicit discrete scheme defined by (34)-(37) with s = 0 is
stable if Co At < 2h. That is

" ( CO AtP) 2 1 at UN+ 112 + 11 ZN+I 12

is bounded by initial data.

Stability for the general s-discrete scheme for s E [0,11] will be demonstrated
in [8]. The methods are conditionally stable for 0 < s < 1/4 and uncon-
ditionally stable for 1/4 < s. For the homogeneous differential equations,
the time truncation is minimized by taking s = 1/6. In [8] convergence
arguments similar those to given here for the continuous-time case will be
presented for the s-discrete case. More general boundary conditions will also
be addressed.

5 Numerical Experiments

We begin by defining the Raviart-Thomas spaces for Neumann Boundary
problems. Let fl be the rectangular domain (0,1) x (0,1) and

(75) A.":0=X0 < X <...-< XXV = 1,

(76) AY: 0 =yO<y1 <...<YNy = 1,

( 11



be partitions of [0, 1]. For such a partition A, define

M9 (A) ={v E Cq([0, 1]) : v is a polynomial of degree < r

(77) on each subinterval of A}.

When q = -1 this is taken to be a space of discontinuous piecewise polyno-
mial functions. The Raviart-Thomas spaces are defined as follows:

(78) w r = Mr(A.)® M (Ay),
(79) q r = [Mr+ (A.) 0 U(AY)J x [M;(A) ® (A)],

(79) q~ +(80) vq~r = f/q,r n {v : v.v, = 0 on 0af}.

Raviart and Thomas [161 show that the above spaces satisfy the inf-sup con-
dition required by [2], [4], etc. For the purpose of our numerical experiments
we will restrict our attention to the Raviart-Thomas space of next to the
lowest order (q = -1,r = 1) and solve the fully discrete problem described
in Section 2 with Neumann boundary conditions. For'discrete initial con-
ditions we use the L2 projections of u(O) and ut(0) into lV-" ,l defined by
(34)-(35). The quantity U- 1, needed in the implicit schemes, is defined by
the relation U. = U'_-' in order to preserve the quadratic convergence in
time. Z-1 is similarly defined.

Two experiments were conducted to compare the performance of two
interesting members of the class of s-discrete schemes given by (34)-(37).
Taking s = 0 yields a conditionally stable, computationally simple explicit
scheme that is second order accurate in time. Setting s = yields an
unconditionally stable scheme that is also second order accurate in time. In
each case we use constant mesh spacings. Specifically we take xi+l - xi to be
constant at hx and yi+l - yj to be constant at hy, and we take h., = hy = h.

The first experiment was designed to see if the schemes accurately de-
scribed the propagation of a radial pulse. We look specifically at the rate
of propagation, the height of the crest of the pulse, and a norm ot the error
computed over the entire spatial domain. For initial conditions we take u0

a member of the family
(81) u(..y) = (2 + y2) if x2 + y2 <{ P~( 0 otherwise,

where

(82) P, (R) = (J- Z )(f + C)2.

12
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The parameter e controls the support and sharpness of the pulse. In what
follows, we look at two members: c = 0.0025, which we shall refer to as the
sharp pulse, and E = 0.025, which we shall refer to as the smooth pulse.
Our first test problem (TP-1) is

(83) uu - Au = 0 in f2 x (0, 0o),
(9u

(84) = 0 on M x(0,oo),

(85) u(X, Y,O) = U X )

(86) ut(xV,0) = 0.

Using classical methods we can write the solution u(x,y,t) of equations
(83) - (86) as the time derivative of a double integral. For our analysis, we
evaluated u(x, y, t) by a combination of analytic techniques and the adaptive
quadrature routines of QUADPACK. We shall refer to this calculation of
u(x, y,t) as the comparison solution.

The mixed finite element procedure (34)-(37) witli Wh = 1,1-" '1 and
Vh = -1 was applied to equations (83) - (86) using a variety of spatial
grids and time steps. The following discrete L 2 porm evaluated at the Gauss
points was used to calculate the error between the comparison solution and
the calculated solution.

Nx NY r+l r+1

(87) 111v112 - (r + l)2 " Z ' S f(xii, Yy)2 ,h~hy,
i=1 j=1 1=1 k=

where xlu and Yjk are the r + 1 Gauss points on [xi-lxi] and [yj-I,yj],
respectively.

Figures 1 and 2 and Tables 1 through 3 summarize our results. The
plots in the figures come from experiments on a 50x50 grid with the smooth
pulse initial condition. We see in Figure 1 that for small At the wave
fronts are nearly circular and coincide well with the comparison solution. As
At increases, the character of approximation solutions to the pulse change.
The pulse becomes thicker and the leading edge looses 'definition. Also, for

> > 1, we begin to see secondary pulses. While in two spatial dimensions
we would expect trailing waves in accord with Ifuygen' principle, the ones
in Figure 1-d and Figure 1-e are approximation anomalies occurring at the
wrong time and with the wrong amplitude. Because the fronts are nearly
circular, we conclude that the fronts propagate at nearly uniform speed in
all directions independent of grid effects.

13



The maximum height of the pulse over the entire domain is plotted
versus time in Figure 2. Given our geometry and initial conditions, three
events occur that effect the maximum of u(., ., t). Initially, the pulse begins
to diminish as it spreads out through the domain. Just before t = 1, the
leading edge of the pulse contacts the boundary and is reflected back. Thus,
at points near the boundary there is a contribution to u by that part of
the pulse that has already been reflected and that part which is about to be
reflected. As a result, the maximum height increases around t = 1. The third
event occurs near t = 1.3 when parts of the pulse reflected off of adjacent
boundaries cross each other. From Figure 2, we see that realizations with
larger time steps seem to under estimate the height of the wave as it contacts
the boundary. This is due in part to the larger time steps smearing out the
wave. In doing so, the crest of the wave propagates slower than the leading
edge, causing the time of impact and the time of crossing to lag those of the
comparison solution. We note that only for F near the stability limit for
the explicit method are these phenomena accurately modeled.

Two interesting items deserve particular attention in the tabulation of
the errors. First we see that for the sharp pulse (E = 0.0025), the spatial
discretization error obscures the quadratic convergence in time expected in
the implicit method. On the 50x50 grid the support of the sharp pulse
is approximately 8 grid blocks. Because the pulse is so poorly resolved
initially, the spatial error dominates the temporal discretization error. For
the smoother pulse (c = 0.025), the initial condition is much better resolved,
and we see the quadratic in time convergence of the implicit scheme. We
note that the error in the implicit scheme is only marginally better than the
explicit error with a comparable time step.

Secondly, we verify the spatial super-convergence that the Raviart-Thomas
spaces possess at the Gauss points (see [15]). For the experiments depicted

Scheme 25x25 grid 50x50 grid 100xl00 grid
s = 0 36.728 7.067 1.848

s 23.008 4.770 1.503
40.005 11.353 3.130
50.501 21.746 6.240

'fable 1: Discrete L 2 Error (x105) for the Sharp Pulse
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Scheme - 25x25 grid 50x50 grid 100xl00 grid
0 17.772 2.693 0.398

-. 7.944 1.294 0.261
1 = 1, 23.752 5.015 0.925

.5 2 1 48.218 13.595 2.691

Table 2: Discrete 2 Error (x10 5) for the Smooth Pulse

Scheme At 50x50 grid At 80x80 gridif
s 0 0.00333 2.693 0.00166 0.616
s = 110.00250 1.294 0.00125 0.324
$ = 0.00500 5.015 0.00250 1.064

s = 0.01000 13.595 0.00500 3.34,1

Table 3: Discrete L Error (x10 5 ) for the Smooth Pulse

in Table 3, the time steps differ by a factor of two on the two grids, but
the 8Ox8O grid is a spatial refinement of a factor of V4 over the 50x50 grid.
Because of the super-convergence of the solution at the Gauss points, the
error measured by the discrete L2 norm (87) is O(h3 + (At) 2). Therefore,
we expect to see a factor of four improvement in the error.

The second experiment compared the ability for the implicit and explicit
schemes, to refocus a pulse. The values of u and -ut of the comparison
solution for equations (83) - (86) were computed at time t = 2 and used as
initial conditions for the second test problem. Specifically, the second test
problem (TP-2) is

(88) vit-A v = 0 in 2 x [0, co),

(89) ev = 0 on OI x [0,c o),"
n

(90) vo(x,y) = ufx,,y,2),

(91) vj(x, y) = -ut(x,y,2).

At t = 2, v is ul defined ii (81). Figures 3-4- a-d Tablcs 4- 5 summarize our
results.

Figures 3 and 4 depict the cross section of v along the x-axis at time

15



Scheme"" 50x50 grid 100x1O0 grid
s'=0 6.674 1.779
s = 1 5.769 1.333

1 1 10.965 3.634
1 1 26.093 6.4924 2 .

Table 4: Discrete L 2 Error (x10 5) for the Sharp Pulse

Scheme 50x50 grid 100x100 grids=0 2.040 0.279
4 i. 1.024 0.134

= 4 3.997 0.679
'1 2 13.516 2.269

Table 5: Discrete L 2 Error (x101) for the Smooth Puise

t = 2 for the smooth pulse. In these figures, we observe overshoot in the
approximation of the front for larger time steps. Moreover, we see that the
support of v is also poorly modeled in the case 't = '. From the tabulation
of the errors, we again see that while the implicit is unconditionally stable,
we must severly limit the time step to reproduce the same error as the
explicit scheme. As in the first test problem, we also see that spatial error
dominates the quadratic convergence in time for the sharper pulse.

Limits on time step size are imposed by two considerations, stability and
accuracy. We have seen for the next to the lowest order. mixed method that
while the implicit method with s = 1 possesses no stability limitation on the
time step, accuracy considerations impose an equally sever, estriction on the
time step. While more test problems need to be considered, our results seem
to suggest that for this higher-order s-discrete method, the computationally
cheaper explicit method combined with some a priori knowledge concerning
stability is preferable to the implicit method.
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Abstract

An integrated concept for more accurate robust and reliable FE-computations of thin-
walled metal structures with elasto-plastic large deformations subject to static loads is
presented. It includes adaptive mesh refinement using a-priori and a-posteriori criteria
and the use of a multigrid solver. We have developed a mesh refinement procedure that
allows the combination of mesh adaptation and multigrid methods for arbitrarily complex
structures. Illustrated examples for for a-priori and a-posteriori mesh refinements are
included.
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1. Introduction'

The topic of this paper is the development of a concept for an efficient and reliable static
FE-analysis of large thin-walled structures as they appear in industrial applications. In
this context the control of the FE-mesh using a-priori and a-posterioro criteria is necessary
in order to obtain optimal convergence of the approximate solution. The structural ele-
ments are folded plates or shells consisting of metals, especially steel, with stiffening plates
or both sides. Besides linear-elastic inembrane and bending stresses there are effects of
large displacements and relations of the structural elements and the influence of plastic
deformat.ions on the stress states. The formulations of all these mechanical properties and
in~ertainties is given in chapter 2 followed by the finite element discretization methods
in chapter 3. Quadrilateral and triangular isoparametric elements are used where only
regular nodes are permitted in the mesh refining process.

A-priori and a-posteriori refinement criteria are developed in chapter 4. The a-priori
criteria control the shape of the elements and the deviations from the geometry. The a-
posteriori criteria for h-adaptivity contain reliable error estimators for linear problems and
heuristic criteria for geometrical nonlinearity and plastifying zones as well.

A careful choice of the solution algorithms for largo systems of equations is another impor-
tant point, as the computational effect of standard equations solves grows superlinearly
with the number of degrees of freedom. In the industrial use of the finite-element method
the practical applicability of new methods is even more important than their theoretical
advantages. The generation of a finite element mesh from CAD data using standard mesh
generators is a time-consuming task and the additimnal effect of adaptive refinement or ge-
neration of a sequence of meshes as well. Chapter 5 gives an overview of equation solvers
with special emphasis on multigrid methods for FE-computations.

In chapter 6 the mesh refinement technique is discussed using a newly developed "Shape
Preserving Recursive Mapped Meshing".

Summarizing an integrated o,, refining concept using a-priori and a-posteriori indicators
is presented, and details of the refinement and solution techniques are described. A couple
of illustrative examples with computer plots are included within the corresponding chapters
whic'_ demonstrate the efficiency of the whole concept.
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which results in the symmetry of TB

TB = (RT)T(R) = T S (7)

where S denotes the 2nd Piola-Kirchhoff stress tensor. The principle of virtual work
S-- now reads

f (TB - U -pb -i)dVJ-f o .rdA, (8)
V A,

The stress resultants are defined by

J d := f Td , mo := (x-xo)xTad (9)

The principle of virtual work can be formulated in the initial configuration

6Wv f Nc -sr, + M,, t5K,)dA (0
A

using the transformations

Not = RTna , Ma = RTma. (11)

for the stress resultants and

r. (S.) = RTxo,. - t. (12)

Ka(Sa) = RTwc (13)

for the strains.
We prefer to work in the corotational configuration, which is defined by a decom-

position (or operator split) of the motion into a rigid body motion and a deformation

X = X D 
0 XC (14)

Fig. 2 : 2D-draft of the rigid body rotation XC and the subsequent deformation XD

of an element

and. -orespondinly

RD = R(RC)T (15)

(The superscript 'D' denotes the deformational part, 'C' the corotational (rigid body)
part). The stress resultats now transform as follows:

NC = (RD)Tn. MC = (R D)Tm . (16)



For the evaluation of strains, the r9tation tensor

R =(17)

is linearized
R D = 1+T; (R )T = 1 (18)

This linearization is only admissible, if T, which describes the element distortion, is
small. This assumption must be controlled during the computation. This tensor is
used in chapter 4, as the basis of an error indicator detecting the geometrical non-
linearity of the FE-solution. An extented treatment of the geomtrically nonlinear
kinematics is given in [3] (see also [4]).

2.3 Material laws

As we restrict ourselves to small strains, we apply Hooke's law in the corotational
formulation for elastic deformations.

Inelastic behaviour is described by an elasto-plastic material law with a von Mises
yield condition and isotropic or kinematical hardening

J2 = -(r- a) 2(r - a) (20)
2

and an associated flow rule:
Pt= A(T- ce) (21)

The material laws only approximate the physical situation and leave to be verified
by experiments. The elasto-plastic material law is time dependent, which complicates
the mathematical analysis. The case of ideal plasticity (without hardening) is especi-
ally critical because slip lines can occur. J2 as an invariant of the stress state is used
in chapter 4 as an indicator for mesh refinement with respect to plastic deformation.

/t6



3 Discretization

The finite element method is by now well established. Nevertheless, even for linear bo-

undary value problems (plate bending) there is still a need for reliable elements with

proven accuracy. Virtually no error analysis is available for nonlinear FE formulations for

thin-walled structures.
3eo

3.1 Finite element formulations
3.1.1 Linear element formulations

In the linear theory, elements for folded plate structures can be treated as a linear com-
bination of a membrane and a plate bending element. For practical reasons, an artificial

stiffness is introduced for the normal rotations. We normally use four-node elements,
but - in the case of adaptive mesh refinement - triangular elements cannot always be
avoided. For the membrane part, we use the usual bilinear (or linear) shape functions.

For the bending part, we normally use the Reissner/Mindlin plate equation. Locking
is avoided by a special (reduced) interpolation for shear strains (Bathe/Dvorkin [5]).

Fig. 3 Parameter plane of the bilinear element

The shear strains at the midside points are evaluated according to the Reissner-Mindlin
plate equations, all other values are obtained by linear interpolation.

1 1(1 -. r) Z + 1 (1 + r) ZB (22)

An a-priori convergence estimate was given by Bathe and Brezzi [6]. It is only valid
for rectangular elements, and the estimate for the shear strains depends on the plate
t.:ckness. Numerical experiments show low accuracy of the shear strains if the element

mesh is distorted, i. e. if adjacent elements have different shapes.
The popular plate elements with selectively reduced integration fit into this context;

for bilinear shape functions, the reduced integration is equivalent to constant interpolation
of shear strains. It's most serious shortcoming-is -the presence of zero-energy modes.

There are promising developments of new elements for the Reissner-Mindlin plate
equation; we mention an triangular element with optimal error estimates by Arnold and

7-



Falk [7] and mixed elements based on the work of Arnold, Brezzi and Douglas [8] (see
also Stein,Rolf.es [9]).

A-priori convergence estimates of FE-methods for quasi-uniform meshes show, that
the rate of convergence depends on the approximation properties of the shape functions
and the smoothness of the solution. In practical applications, the approximated solution
often contains singularities (caused by nonsmooth boundaries, loads and the change of

boundary conditions), and the performance of FE-methods deteriorates. It can be shown,
however, that the optimal rate of convergence can be restored, if adapted non-uniform
meshes are used (see I. Babu~ka, R. B. Kellogg, and J. Pitkiranta [10]).

3.1.2 Nonlinear Finite Element Formulations

A detailed description of the finite element formulation is given in Lambertz [4]. Here, we
describe only the treatment of the rotation and curvature of the elements. The orthogonal
matrices in the element nodes are calculated from three rotational degrees of freedom
Jb1k, b2k, '3k by an exponential map

R = e% (23)

which can be done by Euler parameters (unit quaternions)

qok cos Zkbkli (24)

qik sin kll i = 1,2,3 (25)

The description of R using these parameters is singularity-free. As the orthogonal rota-
tion tensor is also needed in the interior of the elements, it must be interpolated from the
nodal values, which can be done by calculation of the three independent Rodrigues para-
meters from the Euler parameters, bilinear interpolation of the Rodrigues parameters and
calculation of the orthogonal matrices from the Rodrigues parameters. The components
of the curvature vector in the integration points can now be computed as follows:

r.= RT(xo,a - a.) (26)

K. = (27)

To avoid shear locking we use selectively reduced integration. At present there is no
a-priori error analysis of the nonlinear formulation.

3.2 Plasticity

A detailed mathematical analysis of the elasto-plastic initial-boundary value problem is
complicated, because the stresses are bounded in the C-Norm (,C is not reflexiAve).
Details can be found in the papers of Strang, Matthies and Temam [11] or Johnson [12],
Without satisfactory a-priori convergence erstimates for the elasto-plastic FEM analysis,
an a-posteriori error estimation cannot be given.

Instead, we investigate the additional discretization concepts, that are introduced for
the treatment of elasto-plastic behaviour, separately. For the rate constitutive equation,
we use an implicit time integration (projection method), which guarantees, that the yield
condition is satisfied. Like the well-known implicit Euler-method, this procedure is stable.
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(A stability analysis was given by Ortiz and Popov [131). An accuracy control of the time
integration can be done using standard techniques for ordenary differential equations.

In the case of plate bending, the distribution of the stresses over the plate thickness is
not uniform. We introduce a layer model, where the material law is integrated in several
layer points by the projection method, and the stress resultants are computed from the
projected stresses. The numerical quadrature introduces an additional error, that can be
easily'controlled. For more details, we refer to Stein, Lambertz, and Plank [14], Lambertz
[4]. A different approach is an Ilyushin-type material law for stress resultants, that is less
accurate, because the error can not be controlled easily and an adaptation is not possible.
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4. Criteria for FEM geometry representations

"-, The criteria to determine whether a FE-mesh or an element in a mesh is of good or bad
quality, can be subdivided into two categories : a-priori criteria which can be evaluated
without knowing the FE-solution and a-posteriori criteria, which allow to estimate the
deviation of a local error from an average error.

4.1 A-priori criteria

A priori criteria concern mainly the shape of the elements and the approximation of the
geometry of the analysis model. They result to a large extent from the theory of error
estimation for approximate solutions of partial differential equations, which are discretized
with isoparametric elements [14]. Typically we have a following estimate for the error of
the FE-solution uhn.

II -u j < C -. hP  with h: characteristic element length.

This estimate is valid if:

a) the deviation of the elements from the analysis model is relatively small with respect
to the element size;

b) the element shape does not differ too much from a square;

c) the elements do not deviate much from the plane;

d) the elements are conforming.

These criteria together with some heuristics can be controlled a-prori.

Deviation from the analysis model:

For piecewise plane analysis models - as they occur frequently - it is sufficient to control
the deviation of the element edges from curved boundaries of the analysis model. Element
edges which do not satisfy the prescribed quality criteria should be refined until the desired
goal is reached. T -esult of such a check could be seen at a plate with an elliptical hole.
If the boundary r CL hole is approximated such that the deviation in the middle of the
element edges art smaller than one percent of the corresponding edge length, the goal is
reached after 12 refinement steps. The resulting mesh can be seen in Fig. 4.

Fig. 4: Plate with ...

If free-form surfaces are to be discretized one should check the deviation from the analysis
model in every element. An unsatisfactory approximation can be improved by succes-
sive refinement of whole elements. The result of such a procedure can be seen at the
discretization of the wing of an aircraft.

Fig. 5 : Wing of an aircraft " refined with controlled surface deviation



Deviation from the quadratical square shape

The ideal shape of a quadratical element is the square. There a several waxs to measure
the deviation from a square [15], [16]. A hint for the deviation from the quadratical shape
is the angle between the two lines which bisect opposite edges. The smaller one is usually
c.lled sskewness" and has an amount between 0 and 90' . The deviation of skewness from
900 gives evidence of the unsymmetry of an element (see Fig.: 6))

As indication for sharp and obtuse angles or longish elements, respectively, one can use the
ratio of the length of the perpendical line from the midsides of the edges to the diagonals
to the length of the whole corresponding diagonal. The minimum of these values is called
"aspect ratio" and amounts to 0.25 in the best case (square) (See Fig. 6)). Usually it is
between 0. and 0.25.

One gets a suggestion for tapered elements, if the element is subdivided into 4 triangular
surfaces by means of the 4 corner points and the midpoint (i.e. the intersection of lines
which bisect opposite edges). The ratio of the smallest of these surfaces to the whole
surface is called "taper" and has an amount between 0. and 0.25. ( The taper of square is
0.25)(See Fig. 6)

Fig. 6 : Element distortion : Skewness, aspect ratio, taper

In these cases no general refinement strategy can be suggested to improve the the element
quality. Nevertheless the goal of a strategy should be to intersect longish elements, to

o isolate sharp angles in triangles and to divide obtuse angles. The simplest possible actions
are the division of elements into two or three quadrilaterals respectively, the division to one
triangle and one quadrilateral and the division into two triangles and one quadrilateral.
The decision which of these strategies should be applied needs a more careful investigation.
Deviation of the planar shape

As a measure for the deviation from the planar quadrilateral shape one uses normally the
maximum angle between the element edges and the plane given by the two lines wich bisect
opposite edges. It is called "warpage" and is 0 for plane elements. An improvement of the
element quality needs, just like in the cases described above, a more careful investigation
of the reasons for the warpage. As a refinement strategy all the cases listed above come
into question.

Fig. 7 : Element distortion : Warpage

Conformity of"eements

Since nonconforming elements produce meaningless results (at least in standard finite
element codes), one must be able to detect such nonconforming elements. This is possible
by distinguishing between topological and geometrical edges, where the topological edges
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are defined by the unique neighbourhood. The criteria for conforming elements is, that
every geometrical edge corresponds to exactly one topological edge. In Fig. 8 you see a
nonconforming element A, since the geometric edge a corresponds to the topological edges
a and/3.

Fig. 8: Geometry..

Heuristic criteria

Heuristic criteria can be derived by a thorough examination of the analysis model (see
e.g.[18]). Especially for linear problems, critical zones can be detected in advance (e.g.
singularities in corners of the model; discontinuous material properties, loads and boundary
conditions). In the same way, an experienced structural engineer can give meaningfull
upper bounds for the maximum diameter of the elements. By sperifying such criteria, an
examination of a-posteriori criteria can be anticipated. However it must be said, that these
heuristic criteria stick very closely to the description of the analysis model and depend on
the skill of the user. In [18] this procedure is explicitly labelled "expert-system like" and
it should be used with care.

The application of these criteria to a complex structure is demonstrated in the Fig.9.

Fig. 9 : Element mesh for a car body (Audi)

4.2 A-posteriori Adaptation Criteria

4.2.1 Linear Equations

We consider an elliptic boundary value problem of second order:

Lu = f in f0(+boundary conditions) (28)

For these type of problems, a theory of reliable error estimators has been developed
by Babuska, Rheinboldt et el. (see [19],[201,[21]). In this approach, it is not necessary
to evaluate an error function e(h) = u - uh; the energy norm of the error is directly
approximated. Estimation of the energy norm of the error by a sum of local (elementwise)
error indicators:

Cl i(e(h)) <11 e(,") E< c2 p ji(e (h) (29)
i=1 i=1

Thle indicator I (eQh)) can be expressed as:
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"" II h j(Lu(h) - f)T(Lu(h) - f)dx
Jt-]i(30)

+ hi j(q(h))Tj((h))ds,

where
Lu(h) - f = interior residual (can be neglected, if (bi)linear elements are used)
J.(a(h)) .= "jump" of stresses across adjacent elements

This can be directly applied to the membrane equation and to the Reissner/Mindlin
plate equation (see Rank [22]). For the four-node element as presented in chapter 3, it
suffices to evaluate the jump'of the stress resultans

(nn2, n 1 2 ,Ml1M 2,M 1 2 ,q1q 2 ) .(31)
along the element sides and integrate the squares of the differences numerically.

The contributions from the membrane equation (n1 ,n2 ,n1 2 )and the plate equation
(m1,m 2 ,m 12 ,q1,q2) must be evaluated differently, which results in error indicators 77M
and 77B (for the bending part) and corresponding thresholds iiM and iB. An element is
refined, if 77M > iM or 7rB > ijB-

The second example is a simply supported rhombic plate under distributed load. The
angle is 60c. The solution has a singularity in the obtuse corner : u E H 5 /2- c > 0 (Kirch-
hoff plate theory). This problem was used as a benchmark in the DFG-Schwerpunkt
"Nichtlineare Berechnungen im Konstruktiven Ingenieuerbau" (see [23]). For this compu-
tation the Reissner/Mindlin plate bending element by Bathe/Dvorkin [5] was used. The
reference solution was taken from the above mentioned benchmark (contribution Ran-
nacher [23], it based on Kirchhoff's plate theory.

Fig. 10a, 10b, 10c, 10d, Ila, 11b, Ile .

4.2.2 Large Rotations

An error analysis for nonlinear problems is generally more complicated, sinc the uniqueness
of the solution is not guaranteed and branching can occur. To avoid these problems, we
restrict ourselves to the stable part of the solution path (below the first critical point) and
concentrate on a local error analysis. This can be done by evaluation of the error indicators
for linear problems at the linearized equation. For geometrically nonlinear problems with
small strains and large rotations, where no a-priori convergence analysis is available, we
adopt the simpler approach of controlling the linearization assumptions in the nonlinear
formulation.

The relative rotation in the element is given by

RD = R(RC)T, (32)

where PC is defined by the displacements of the element nodes.
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In the kinematicalequations, the rotation tensor

R D = + IFq + .. (33)

is approximated by

RD = I + l (34)

in each element.

Thus, thz magnitude of the relative rotation I1ftD - III must be controlled.

From

o= -03 1 '01 ('35)
'02 -01 1

we have ( witii the norm IIAII= SF,1=1 ,3 ai )

II1tD _ III= V12/¢2 + 2 + V)3 02 VL (36)

indicator: VNL = max - III (37)

This indicator can be directly interpreted as the distortion of the element and is there-

for similar to the 'warpage' criterion introduced earlier as an a-priori indicator. Again, a
threshold ',NL is defined and all elements with 7NL > NL are refined. Normally N1NL is
choosen in the range (0.,0.1). It should be emphasized, that it controls only the lineariza-
tion assumption; no error measure is associated with it.

Additionally, the jump of the stress resultants can be evaluated as in the linear case.
The stresses should be measured in their corotational frame and not transformed to a
common coordinate system. The indicator 77NL is applied in the nonlinear analysis of an
L-shaped beam (Fig. 12, see also [31).

Fig. 12a,12b

4.2.3 Elasto-plastic problems

Due to the lack of a satisfactory a-priori analysis for the elasto-plastic finite element
problem,,reliable a-posteriori error estimators are unavailable. Furthermore, linear criteria
are not significant because of the-stress projection.

We have to resort to a heuristic criterion. For the proper choice of this criterion, the
aim of the elasto-plastic analysis must be taken into account. lWe are especially interested
in the ultimate load or failure analysis of structures (possibly including cyclic plasticity).
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In this case, the plastic deformations, that cause the failure of the structure, are normally
resticted to a small part of the system. It is reasonable to improve the accuracy at the
boundary of the plastic zone, which leads to the heuristic indicator

7 7TPL J2 (38)

An element is refined, if

77PL > XaV (39)

where r. is a constant e (0.9, 1).

For the analysis of forming process, where large parts of the structure undergo
(possibly large) plastic strains, this criterion is not suitable. (This would also require a
different mechanical formulation.)

Fig. 13a, 13b

This criterion is demonstrated for an stretched strip with a circular hole (Fig. 13a - c).
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5. Algorithms

The finite element discretization of boundary value problem results generally in large

systems of linear or nonlinear equations that have to be solved numerically. The proper

choice of the solution method strongly influences t'he obtainable overall accuracy." We first

mention that the numerical solution process is - due to round-off - another source of error.

These roind-off errors are the more serious the larger the condition number of the matrix

of the (linearized) system is, which - in turn - grows with increasing number of degrees of

freedoin and with the approach of critical points on the solution path.

As we restrict ourselves to subcritical loads and stable discretization methods, round-off

problems are not significant for moderately large problems. (We have investigated systems

with up to 3 .104 unknowns.) In this range the computational complexity of the solution
algorithm is far more important for the obtainable accuracy. In the sequel we therefore
discuss efficient methods for the solution of large linear systems of equations

Au = f, U, f E JWn, A E )Rnx symmetric positive definite,

as they arise from the finite element discretization and give a short outlook on the treatment
of nonlinear equations. We are especially interested in the time and space requirements of
these methods.

5.1 Direct and iterative methods for linear problems

Elimination methods make use of the positive-definiteness and the band (or skyline) struc-
ture of the matrix A. With optimal node numbering, the decomposition time normally
increases like O(n 2 ), and the memory requirements grow superlinearly as well (O(n2)).
They are very efficient for small systems, and standard software is available for the as-
sembly and decomposition of the matrix. Furthermore, they can be efficiently vectorized.
Nevertheless, the time and space requirement of the linear solver will eventually determine
the maximum problem size.

Iterative methods generally have less space requirements (O(n)) due to indirect addres-
sing. Popular methods are Gaufl - Seidel - relaxation and it's variants ( Jacobi-iteration,
successive relaxation ). Although there is no general theory available the analysis of a
model problem (see [25]) yields the following estimates:

Jacobi-iteration and SOR. wi-th w = 1 : 0(n 2 ) operations

SOR with w = wopt : O(ni) operations

In the general case one has to resort to numerical experiments for a sufficient approximation
ofw ,.t. Our numerical tests indicate that even with near optimal w, SOP is not comnpeLitive
with decomposition methods for n < 10' .

The method of conjugate gradients (cg) is more promising. The basic convergence estimate
for the cg-method-is (see [26] e.g.).

(



I uk - u i < (2 (i+) [uou [[i (40)

where . is the condition number of the matrix A and 11 u I -:= uTA-u. Without further
improvements this yields O(n2) equations for a fixed error reduction.

Acceleration can be achieved by preconditioning: substitute A by V-AV T with a-sui-
table matrix V such that r((VVT)-!A) is smaller than io(A). Popular preconditioning.-
inethods are SSOR with optimal w and uncomplete factorization of A, which reduces -
in certain cases - the number of operations to O(n!) (see [3]). A far more effective
precohditioner is the miiltigrid method, (see below).

5.2 The multigrid method for linear problems

The multigrid method is motivated by an observation about the classical relaxation me-
thods: the long wave components, which correspond to the small eigenvalues of the matrix
A, cause the slow convergence of relaxation methods, whereas tihe highly oscillatory terms
converger fast. So, it's useful to perform only a few relaxations steps for the oscillatory
terms and approximate the remaining error on an coarser mesh. The proper combination
of these two procedures - smoothing step and coarse grid correction - characterizes the
multigrid method.

The multigrid method requires a sequence of FE-meshes (MT...(m)T and the correspon-
ding spaces of test functions SjC...CSm. The linear equations on these meshes are
M1)A M u (Mf. The mesh (k+')T is constructed from mesh (M)T by subdividing
all or - in the case of adaptive refinement - some elements on (M)T into four new ele-
ments, (and by introducing special refinement schemes in the transition area in the case
of adaptive refinement).

Fig. 14: Graphical representation of 3-grid methods

In the sequel, we give only an outline of convergence results of the multigrid method; the
reader is referred to the book of Hackbusch [27] for details about convergence estimates.

An optimal convergence rate can be established by an estimate for the contraction number
p k:
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P= IIu II < a <1 (41)--- IIj uk-'-_-uI

( where a is - in contrast to the classical relaxation methods - independent of the meshsize.

Neglecting post-smoothing, one has for a two-grid iteration:

(2)uk+l _(2)u = ((2)A-1 - p(1)-R)((2k& (2)uk," _(2)f) (42)

whe'e Uk,s derrntes the result of the pre-smoothing step.

One can now combine the following estimates:

(i) II - U 112 < S(Vl)T2 J 11 ' - U I0 (43)

where the smoothing function s(v) tends to 0 if v (= the number of relaxation steps ) tends
to infinity. This estimate can be easily shown for the Jacobi-iteration. The inequality (43)
characterizes the smoothing property of the multigrid method.

(ii) II U _+ u II- cU 2 II 1k, - U 112 (44)

This is the approximation property of finite element spaces.

Combining (i) and (ii), one finally has

11 k+ - U II0< cs( i') II k _ U 1 (45)

independent of the meshsize.

The above estimate is directly applicable to second oider problems without singularities
and a conforming finite element method. An analogous result for problems with singu-

.,....larities was given by Yserentant [28]. If more than two grids are involved, the W-cycle
iteration can be considered as a perturbed two-grid iteratioi. and a convergence estimate
follows immediately. For the V-cycle, the estimates have to be refined. A refinement of the
technique is also necessary, if the smoothing property cannot be established directly. (This
holds especially for the Gau - Seidel relaxation, which is very efficient as a smoothing pro-
cedure in numerical tests, but still lacks a theoretical foundation in the general case.) The
convergenceproofs can be extended to fourth order problems. The above discussion shows
that the convergence of the multigrid method is guaranteed for conforming finite elements
methods (and Jacobi relaxation). The efficiency of the method can be further improved in
several ways:
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(i) The initial iteration vector is obtained by transfer of the solution on the previous
mesh (nested iteration).

(ii) The truncation error needs not be much smaller than the approximation error.
Combined with (i), this means that often two or three (even one) iterations are

- sufficient.

(iii) If the contraction number pk is 1; rge (> 0.5 e.g.), the multigrid iteration can still
be used as preconditioner for a conjugate gradient iteration, which improves perfor-
mance significantly.

We conclude this section by presenting some results for the membrane and the plate equa-
tion. . .

5.2.1 The multigrid method for the membrane plate equation

For a conforming FE-method (using bilinear shape functions) the standard multigrid theory
is directly applicable. The table 2 contains contractions numbers for a two-grid iteration
with different parameters (v denotes the number of pre- and post-smoothing steps).

Tabel 2: Error reduction factors for a two-grid iteration

From the practical point of view, the computiag time is more important. Table 3
compares the CPU time (on CDC Cyber 990, in seconds) for a decomposition method
with the time for the multigrid iteration for different numbers of unknowns n.

It should be noted, that the hardware situation is rather unfavourable for the multigrid
method, as the matrix decomposition was accelerated by a factor '-. 10 through vecto-
rization, whereas the relaxation and smoothing procedures could not be vectorized. On a
typical w!,zlstation, the multigrid method would probably have an even bigger advantage
over the decomposition method.

In some cases - especially if the coarse, grid solution is very inaccurate - the contraction
numbers are much larger. This has been identified as a locking problem [30] and reme-
died by a scaling factor. Our investigations show, that a conjugate gradient iteration -
preconditioned with unmodified multigrid cycles - is equally effective. TLis preconditio-
ned conjugate gradient method can be generally recommended-as an efficient and robust
algorithm.

.. Tabel 3: CPU - time for a two-grid method versus decompositions for different problem
sizes

5.2.2 The multigrid method for the Kirchhoff plate equation

For this fourth order equation, nonconforming elements are normally used, which makes
the analysis of the multigrid method more difficult. Nevertheless, good convergence results
have been obtained for some elements (e.g. discrete Kirchhoff theory elements, Morley's
element (see [31])).
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5.2.3 The multigrid method for the Reissner/Mindlin plate equation

If we use the bilinear shape functions without modification, the multigrid method could be
directly applied. The measures against shear locking, however, generate special problems

jl for the multigrid algorithm. Numerical tests with the assumed-strain element [3] exhibit
fast convergence for thick plates, a contraction factor of t 0,88 (with pcg smoothing: ;
0.5) for j (= elementsize / plate thickness) = ' and divergence for d > 10. This problem
has not yet been solved. Results for similar elements suggest the use of an equivalent mixed
formulation.

5.3 Multigrid methods for nonlinear problems

Multigrid ideas can be used in several ways to speed up nonlinear iterations. In combi-
nation with Newton's method, efficient start vectors for the iteration can be obtained by
prolongation of a coarse grid solution (nested iteration) and the linear system of equations
can be solved by a multigrid iteration (Newton-multigrid method, Newton MG). It is also
possible to apply the multigrid method with nonlinear smoothing directly to the nonlinear
problem (full approximation scheme, FAS). A comparison of the Newton MG with FAS
applied to a geometrically nonlinear membrane and plate bending problem shows that the
convergence of the FAS often is better than that of the Newton MG, if the nonlinearity gets
a stronger influence on the solution. The full approximation scheme needs less memory,
but more time for the smoothing step than the Newton MG.

As in the linear case both methods can be accelerated by a line search or a combination
with a conjugate gradient scheme (see [31]). A combination of the two methods, starting
with nested iteration, applying some steps of the FAS and then, in the near of the solution,
changing to the Newton MG with several linear multigrid cycles for one linear system of
equations is especially promising.
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6. Mesh generation and refinement

We first give an survey of the whole process and then discuss single topics like the definition
of a structural model, the generation of an initial mesh and the refinement of the initial
mesh in more detail.

6.1 Survey

In the practical application of FE-methods the generation of a suitable FE-mesh for the
structure under consideration is often extremely time consuming. At present a number of
commercial mesh generators are available which simplify the generation process; but one is
far away from an entirely automatic procedure which is working with a standard interface
to CAD-data.

For a combined application of mesh refinement and multigrid methods none of the
standard programs meet the requirements. Thus a new concept has to be developed.
This concept is adjusted to an automated discretization and calculation within specified
tolerances and without further actions by the user. It distinguishes between four stages in
the mesh-generation process which are mainly independent from each other.

At first one presupposes that a representation of the structural model is given. This
structural model either contains references to a corresponding CAD-representation or an
explicit description of the geometry. This description of the geometry has to be enriched
by the quantities that are needed to formulate the boundary value problem (material
properties, loads, boundary conditions, kinematics...).

Based on this structural model an initial mesh in constructed, i.e. the structural model
is split in three- and four-sided regions and the topological relationship between the regions
is determined.

In a third step a mesh, that is suitable for a FE analysis, is generated by refinements on the
basis of a-priori criteria. This "admissible mesh" can be refined on the basis of a-posteriori
criteria and transforms then to a mesh, that is quasi-optional with respect to the ratio of
cost versus accuracy. This mesh is called in following "adapted mesh". On that mesh one
should be able to perform a multigrid calculation. These steps can be seen in Fig. 15 a)
-d)

Fig. 15 a) - d) : Steps of mesh generation and refinement
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6.2 Structural model

A description of the structural model by means of a normed data interface is desirable.
Unfortunately the customary data-interfaces as VDA-FS, IGES, SET are not in the posi-
tion to do this at present. Nevertheless ther-, are activities to supply this want; we refer
to CAD*I and the ISO-norm STEP which are under development.

In this situation a new data model was developed to implement the algorithms in INA-
SP (INA-SP : Inelastic Analysis of Shells and plates, developed at IBNM, University
of Hannover) and ICEM SURF (ICEM SURF : developed by Control DAta Corp.). A
relational concept was chosen, using objects and relations between these objects. Any
kind of attribr~te can be assigned to objects and their relations.

The database structure does not only make the common distinction between the di-
mensions of the object, but has in addition the capability of a hierarchical differentiation
to support surface or part-oriented operations. In addition, topological and geometrical
data can be distinguished, as well as data used in different models. It is an open concept
allowing a connection with other models and hierarchies.

6.3 Initial mesh

In the following we will distinguish between initial mesh generation and " mesh refine-
ment". The task of initial mesh generation is to deliver a first discretization of a structural
model. That means, an initial mesh generator disintegrates a structural model, which is
essentially given by purely geometrical quantities (possibly supplemented by nominal to-

- pological specifications), into a number of three- and four-sided "elements " (in the case of
free-form surfaces). These elements are connected with their neighbours by the numbering
of their nodes and edges. The topological connection by the numbering of edges is needed
since there is no guarantee that the initial mesh is conforming. A mesh is conforming, if
the interaction of any two adjacent elements is either a vertex or an edge of both elements.
Nodes violating this condition are called irregular nodes. The automatic generation of the
topology out of purely geometrical information should be possible for branching and over-
lapping structures. The generated elements have to be independent of the representation
of the structural model.

The simplest possibility to produce an initial mesh is the enrichment of the structural
model by all the topological quantities needed, i.e. by the information about nodes, edges
and by manually collecting nodes and edges to elements. This way was chosen in INA-SP.

A second possibility is to divide the structural model into simple components ( e.g.
simply connected regions, regions with three or four distinguished boundaries). The topo-
logy of these boundaries has to bee specified explicitely. The partition into triangles and
quadrilaterals could then be done in an automatic way. Common procedures for this task
rest on, e.g. the mapped meshing principle [32], the Dirichlet tesselation [33], the best
splitting method [34] and the quadfree method [35].
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The next step should be the generation of the topological relation between the simple
components automatically. For regions with three or four distinguished boundaries this
was done in ICEM MESH [36J. It should be pointed out that if T-connections are present,
a ziode topology is not sufficient to correctly identify and process branched structures and
topological relations between adjacent elements. This requires the more efficient segment
topo)',gy.

•g. 16 Transitition from GAD-geometry to CAD-topology

6.4 Mesh refinement

The initial mesh is neither necessarily conforming nor is the presence of distorte , elments
forbidden which are rejected by many inite element programs, nor must these elements
represent a meaningfull approximation of the structural model. The refinement algorithm
has to guarantee the mentioned properties as well as the quasi-optimality of the mesh. It
is to be ensured that local criteria are met by local refinements, without any propagation
further than to the adjacent elements, without any reduction of angles, and generally
producing quadrilateral elements.

The technique used here is a recursive application of the mapped meshing concept. As
criteria for the refinement serve the nonconformity of element edges, the a-priori and the
a-posteriori criteria described in chapter 4. While a-posteriori criteria cause a homogenous
refinement of an element, the refinement scheme caused by a-priori criteria or by the
nonconformity, respectively depends on the criterion, in order to generate new elements
which fit better to the criteria than the original one.

- In common algorithms [22] the adaptation of neighbouring elements to a refined element
causes difficulties. One could circumvent these difficulties by generating new nodes in
the interior of the original element only. But the new elements show unfavourable angles
compared with the original elements. After some refinement steps the mesh would entirely
useless. Thus it is an essential goal to preserve the shape of elements or to improve
it respectively. This can only be done by subdividing the elementedges. Usually the
elementedgcs are halved. It is not recommended to generate more than two edges out one
element edge, since the number of nodes is rapidly increasing, the multigrid methods do
not work efficiently and the algorithm will be- substantially more complex.

By the refinement of elementedges the problem of conforming elements arises. If irregular
nodes are retained - as it was suggested by [37], [22 - the degrees of freedom at these
nodes need to be eliminated in advance. The drawback of this approach is, that one has
to interrere with commercial FE-programs usually is not possible. For conforming meshes
the algorithms are considerably larger complixity. The method used here is called "shape

S-recapped meshing" V ) and will be described in the following.

After the evaluation of all adaption criteria, the following situation occurs at the beginning
of a refinement step; for a portion of the elements some or all of the edges are marked
for refinement. Frequently inadmissible refinement patterns arise (e.g. by propagation of
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refinements in adjacent elements), usually there are quadrilaterals with three edges to be
refined. In this case the fourth edge will be refined, too. This adaption step for the edges
will be repeated until only admissible refinementpatterns appear. In Figure 17 some of
these patterns and the corresponding refined elements are displayed.

(a) (b) (c) (d)

Fig. 17 'Some refinement patterns and the corresponding elem.ts

6.5 Refinement of modified elements

Problems are caused by the refinements (c) and (d) in Fig. 17. These refinements produce
elements which halven an angle in the original element. Such refinement will be called
"modified". Modified elements violate the goal not to deteriorate the shape of the original
elements. On the other side, there is on way to generate conforming and adaptive meshes
without halvening angles.

In SPRMM it is presupposed that the angles are chosen in such a way that one (and
only one) division of an angle is allowed. Therefore it is necessary to prevent the angles
from a repeated subdivision. Hence modified elements are always treated in a special
way. A-priori criteria with respect to the element shape are not applied to them. If an
additional subdivision is required by the adaption to the refinement in an adjacent element
or by other criteria, one goes back to the unmodified original element and eliminates the
modified edge. This procedure is demonstrated by the following example (see Fig. 18). The
pattern (d) in Fig 17 has to be refined since two adjacent elements have been subdivided.
After elimination of the modified edges in mesh 2 all the elements in mesh 3 are regular.

mesh 1 mesh 2 mesh 3

Fig. 18 : Refinement of a modified element

Thus it is ensured that angles are deteriorated only by a factor of 0.5. The programming of
this algorithm is quite '.xpensive, since a lot of special cases have to be taken into account.

6.6 Remarks

- With the respect to the combination with multigrid methods it should be noted that
the inclusion of the spaces of shape functions is violated locally by the elimination of
modified edges.

- For multigrid methods the nearly generated nodes are entered into the element- and
edge-tables of the new level. Since the kind of shape functions for the elements and
edges are stored in a table too, there are no additional information required to proceed
with the transfer.

- The refinement algorithm is independent to a large extend from the type of the shape
functions nd therefore from the number of nodes in one element. This number is only
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important for the node generation; at present in addition to the three- and four-noded
elements with six and nine nodes are realized. A further increase of the number of
shape functions or a different number of nodes on element edges makes no difficulty.

Some examples of the application of the refinement algorthm to complex real life
structures are shown in the following figures 19 - 21, where different steps of this
process are shown. In part a) of those the initial FE-mesh is plotted and in part b) the
refined mesh reguarding all a-priori criteria. We thank the Volkswagen AG, Wolfsburg;
Aerospatial, Toulouse and Control Data Coporation, Minneapolis, for permitting the
publication.

Fig. 19 : Roof girder of a motor car
19 a) : Initial FE-mesh
19 b) : Shaded initial FE-mesh
19 c) : Detail of the refined mesh

Fig. 20 : Outer body of a motor car (Audi Coupe)
20 a) : Structural model
20 b) : Initial FE-mesh
20 c) : Refined FE-mesh

Fig. 21 : Suspension of the engine of an aircraft (Airbus)
21 a) : Structural model
21 b) : Initial FE-mesh
21 c) Detail of the suspension of the engine
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7.Conclusion

A concept for the coupling for CAD and FEM by automatic mesh generation for widely ar-
bitrary criteria was presented where the a-priori criteria were: element size, element shape,
deviation from the given geometry and the conformity of the elements. The a-posteriori
indicators for mesh refinements are besides the well-known estimators for linear elastic
problems, a control of the linearization assumptions for geometrically nonlinear problems
and a heuristic refinement criteria derived from the von Mises J2 - yield condition.

The method for the construction of conforming finite element meshes is independent of
a specific CAD data representation. The tools are an automatic topology generation,
an appropriate database, refinement criteria and a local refinement strategy. In total,
incorporating the computational experience, the presented integrated adaptive engineering
system have proven to be reliable for the mechanical modelling and the discretizatio, and
effic:ent with respect to the solvers.
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1. SUMMARY

This paper examines the sources of idealizations commonly employed during the application
of engineering analysis, and indicates the techniques available to control tie errors they introduce.
A frmework is presented if a modeling system that can support the vamous levels of analysis
idealization control. Methodologies for the use of such a system in the design and analysis of
airframes and plane elasticity prblems are discussed. Finally, comparisons of the computational
efficiency of automated, adaptive analysis teclniques to control the discretization error in the energy
norm for plane elasticity problems are presented.

2. INTRODUCTION

The area of computational mechanics has advanced to the point that it is possible to perform
reliable engineering analyses for a wide variety of physical problem types. The availability of these
capabilities in the form of general purpose analysis codes that run on fast and inexpensive computers
has provided engineers with the ability to perform various forms and levels of analyses during the
design process. However, the ability of the design engineer to reliably apply the current general
purpose analysis tools to determine a given set of performance parameters is questionable. In general
it is not possible to provide every design engineer with the extensive training needed in the techniques
underlying the analysis tools to reliably apply those tools. It is therefore necessary to continue to
develop the tools to provide engineers with the needed capabilities. These tools must explicitly
control all levels of idc:ilization associated with each analysis performed.

There is a tendency of some to assume that the development of this set of tools is not an
appropriate goal, because every engineer should fully understand every tool they use. In today's
environment this is no longer a practical point of view. The number and sophistication of the tools
available and required to do engineering design in a competitive manner is beyond the ability of
the engineer to learn in any acceptable time frame. It is more important for engineers to have the
training needed for the tasks they are going to perform, and that the tools provided to them do reliably
perform the tasks they are claimed to be capable of performing.

Idealization errors in engineering analysis arise from a number of sources ranging from the
selection of the mathematical model for the physical behavior of interest, to the discretization errors
associated with a finite element mesh.The techniques available to control the errors introduced by these
idealizations range from simple rules based on experience to bounded a posteriori error estimates. It
is important that techniques that improve the ability to reliably control the errors due to idealization
continue to be developed. It is also important that the tools necessary to support all levels of
idealization control be integrated with design modeling systems.

This paper discusses the idealizations common to engineering analysis and the techniques
available to control those idealizations. It then examines the framework of a modeling system that can
support the various levels of idealization control and how two specific groups of idealizations may
be controlled using such a system. Finally, the computational efficiency of some current procedures
for the adaptive control of the idealization errors due to finite eiement mesh discretization are given.

(
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Figure 1. Idealization of simple bracket

3. IOEALIZATION IN ANALYSIS AND DESIGN
The application of engineering analysis typically employs a number of idealizations to reduce

a physical b,havior to a set of algebraic equations that can be solved manually or on a computer.
Figure I depicts some of the idealization processes typical for reducing a simple mechanical problem
to a form appropriate for numerical analysis. Each step of idealization used in an engineering analysis
proces3 introduces some level of approximation error. The reliability of an analysis depends on the
ability to understand and control the approximation errors introduced by- each step of idealization
[1], (2], (3], (4].

T he accuracy of a solutio is a Lf-U-ctioi- of, the -e5ue(s) of accuracy you are interested in.
When an analysis is performed; there are several parameters of interest for which error control is
desired. Therefore, the goal of the analysis is to obtain a solution such that

ei _< Ti i = 1,2,3,...,m
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I where ei is the valueof the error for the i A norm, Ti is the limit allowed for the error in the ith

norm, and m is the number of error norms being considered.

The first step to estimating the errors in engineering analysis is to enumerate the contributing
sources as

ei = ei(qffl, 0,D, ,A)

where q, is the base mathematical model selected to represent the physical behavior of interest, l
is the domain of the analysis, -, are the dimensional reductions and associated alterations of the
mathematical model to eliminate physical dimensions, D are the material property parameters, 0 are
the boundary conditions (also initial conditions when time is one of the dimensions of the problem),
and A represents the discretizatiun used for the analysis.

The brief descriptions given below indicate what each source of error is. A more detailed
discussion of these error sources including the example of their relation to the analysis of a reinforced
concrete dome roof are given in reference [3].

Mathematical model, %P,. The derivation of a mathematical model employs physical laws,
mathematical manipulations, and behavioral assumptions. The behavioral assumptions are needed
so that the, physical laws can be mathematically manipulated to yield a useful set of expressions.
Each behavioral assumption introduces approximation, and associated error. Therefore, the errors
introduced by each assumption must be considered.

Domain, fl. There is no additional error introduced into the analysis if the domain is complete(with respect to the mathematical model being solved. The domain used in most analyses is typically
not complete in that it may be limited to a portion of the total domain, with boundary conditions
applied along the boundary introduced by the eliminated portion of the domain. If the portion of
the domain eliminated is symmetric to that analyzed, and the proper essential boundary conditions
are applied, there is no error introduced into the analysis. In many cases the portion retained is
not symmetric with the portion eliminated. In these cases, an error due to geometric approximation
is introduced. It is also common to eliminate geometric details which also introduces errors into
the solution.

Dimensional reductions andassociated mathematical model alterations, 4'. It is often possible
to selectively introduce specific behavioral assumptions over portions of the domain which allow the
simplification of the mathematical model by reducing the physical dimznsionality of that portion of
the domain. One example that has received considerable attention, and is the subject of several of the
papers in this volume, is the elimination of one dimension from the three-dimensional equations of
elasticity to produce plate and shell formulations. The eliminated physical dimensions are accounted
for by tje introduction of specific paramevrs. The application of dimensional reductions is an
additional source of solution error.

Material properties, D. The mathematical model, 1, as well as dimensional reduction and
associated- madiernaical model, alterations, 0t, fix lwhe-cwc of he -naterial model. However,
within that framework there is still the specification of the parameters. Any variance from the correct
form and values Antroduces, error into the solution.

Boundary and initial conditions, P. The mathematical model, T, as well as dimensional re-
duction and associated mathematical model alterations, 0', specify-the boundary and initial conditions
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that are part of the current analysis. The boundary and initial conditions which must be specified
are often difficult to abstract from the physical situation being analyzed. In addition, the values of
many of them, particularly natural boundary conditions, are probabilistic ik nature. Therefo,., they
can be another soatce of error in the analysis.

Discretization, A. Discretization consists of representing the continuous field by one written
in terms of a specific number of parameters. This reduction of the solution test space introduces
approximations into the analysis process.

Since the exact solution to a requested analysis is generally not knoiwn, it is only possible to
obtain estimates to the solution error. The goal of idealization error control is to ensure that

Ei <5 Tj i = 1, 2, 3, ,..., m

where Ei is the value of the error estimate for the i h norm, Ej -+ ei as the solution procedure is
refined, and Ej = ei for a solution of acceptable cost.

The techniques available to aid in the control-of idealization errors include:

1. Analyticall;,-based error estimation
2. Analyticall) -based results for ideal situations
3. Model improvement through hierarchic model comparisons
4. Sensitivity analysis
5. Statistical methods
6. Comparison to known physical limits
7. Comparison to test results
8. Comparison to reasonable limits
9. Rules based on experience and intuition

The ability of these techniques to reliably control idealization errors varies greatly. However, it is
not always possible to derive an entirely reliable control method for many idealizations. Therefore,
the preferred method of controlling idealizations is to use the best method available for each, and to
strive to develop improved methods to control those idealizations for which control can be improved.

Analytically-based idealization control techniques based on bounded error estimates are the most
reliable because they provide a direct measure of the error contribution. The development of a
posteriodi error estimators to control the idealiz-:ion errors due to discretization is currently an area
of active research and development [51, [6].

Another method to improve the reliability of a solution process is to employ analytically-based
results for idealized situations within a more general analysis- process. The development of these
types of procedures is common place for the solution of problems where behavioral considerations
at two different size scales are critical, to the prediction of the behavior at both scales. A common
class of problems are materials constructed from multiple constituents including composite materials
[7], [8], [9], soils [10], and hydrated tissues [11], [12]. In this class of problem the micromechanical
b6havior of ille individual coflsiLuenfts dern.rn ies the overall behavior of the material. A number
of homogenization techniques [23, [7], f[], [11], [10], [9] have been developed to define a set
of homogeneous material properties fot a macromechanical level analysis that accounts for the
micromechanical behavior of the constituents. Such techniques may also be useful-in the development

( of procedures for supporting specific classes of geometric simplifications.
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( Model improvement through hierarchic modeling comparisons involves solving a model at one
level of representation and then using that information with a hierarchically better representation to
determine any required improvements in the current solution as well as providing additional local
information. Noor [131, (14] has developed such a procedure for the analysis of composite plates
and shells. This procedure performs a macromechanical analysis using a lower order transverse shear
representation. The overall solution parameters at specific locations are used to define the information
for an approximate local three-dimensional analysis. The three-dimensional calculations give useful
estimates of local parameters as well as an improved shear correction parameter for use to obtain
improved values of the overall solution parameters.

The application of sensitivity analysis methods does not give a direct measure of the error due
to an idealization. Their primary use is to give a measure of how much variation in a specific
set of performance parameters can be expected from variations of another parameter. For example,
the sensitivity analysis procedures used in shape optimization (15] can provide useful information
on the sensitivity of many structural analysis solution parameters to changes in the model domain
definition. Sensitivity analysis information can be used to improve the reliability of engineering
analysis procedures by indicating the range of variation to be expected in one set of parameters based
on other parameters. They can also be used to point out which solution parameters must be most
explicitiy controlled since their values are subject to large variations.

Statistical methods are important for providing an analysis of the influence of variations of
problem definition parameters on the solution parameters. For example, Babuska [1] has analyzed
the influence of stochastic loads and boundary conditions on various output parameters such as yield( surfaces and fracture criteria. The results demonstrate the need to carefully perform such analyses
since a given level of variance on input parameters and their distribution can lead to substantially
different variances in the solution parameters of interest.

Comparison to known physical limits and comparison to test results represent relatively simple
procedures to check the validity and/or accuracy of an analysis. In both cases the analysis results are
compared to information that has been specifically measured. The differentiation made between the
two techniques is that physical limits are commonly know and tabulated measures, such as the melting
point of a material, while test results are assumed to give specific measures of parameters on a full
scale or component test that matches an analysis performed. Comparisons to known physical limits
typically provide simple validity checks on some basic behavioral assumptions used in the analysis.

Comparisons to physical tests are more commonly used to determine the ability of the analysis
procedures to accurately predict the solution to an analysis. The application of such comparisons
rwge from proof testing of the final design to the development of specific modeling technologies.
One example area currently under study by Szabo [4] is the modeling of structural connections used
in the aerospace industry. Due to the number of such connections and their behavioral complexity,
a number of simplified modeling procedures, which have been "verified" and tuned using test result
information, have been developed. An interesting result of this investigation is that although there
appears to be a correlation with test results, the modeling procedures often applied are incorrect
because they employ mathematically inadmissible representations of the support conditions [4].

Comparisons to reasonable limits can be used to help improve the reliability of a solution process
in a manner similar to comparing solution results to known limits. The differentiation here is that

the reasonable limits are not hard physical limits, instead they, represent limits that have been found
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to provide a reasonable measure of the limits of validity of analysis assumptions. One example is to

assume that it is satisfactory to employ a small strain formulationwhen the strains are below a given

limit. Such simple comparisons provide an inexpensive means to check assumptions where the only

alternative to determining the influence of the assumption is the expensive process of performing the

analysis without that assumption. The values of the reasonable limits are often obtained from previous

results which have provided measures of the importance of specific assumptions on the analyses. To
be used in a reliable manner, such limits must be conservatively set, with previous demonstration
of the generality of employing such limits. The generality of such limits is best determined through

appropriate mathematical analysis.

The final technique to improve the reliability of a solution process it to employ rules based
on the experience and intuition of those that have successfully defined and applied those rules.
Over the years, most industries develop and document specific sets of analysis modeling rules that
are appropriate to their specific class of problems. The company's engineers employ, and when
appropriate, improve these rule sets for future use. One set of such techniques for the dimensional
reductions and discretizations used to develop airframe finite element models is given in [16].

The paragraphs below briefly discuss the idealization control techniques with respect to the
idealization error sources.

Mathematical model, *, primary purpose of idealization error control for a mathematical
model is to qualify the I, ,a:oal assumptions used to derive that model. The application of
analytically-based procedures "sdifficult since these require the existence of mathematical models
to measure against. The exceptions to this would be where a related set of hierarchical mathematical
models would be available to measure a.gainst, or at least compare to each other. However, it must be
realized that this approach requires the existence of a high level mathematical model that is known
(assumed) to be correct.

One idealization control method that can be applied at thi. level is the comparison of the results
to known physical limits. Two simple examples of this type are, checking the stress field from a
linear elastic analysis against a yield criterion, and comparison of the temperature field from a thermal
analysis excluding phase change with the melting temperatures of the constituents. In some classes
of analyses such straight forward checks are not as simple. For example, it is often not possible
to examine the results of a fluid flow analysis to see if the exclusion of a specific consideration
would strongly affect the solution. In such cases, experience (either from experimental comparisons
or trial and error) may be useful in providing guidance as to reasonable limits for the application of
specific mathematical models. Finally, specifically designed experiments to measure selected critical
parameters must often be devised to help test the appropriateness of a mathematical model.

Different levels of mathematical models are often used in the design process to evaluate an
aspect of a design. Often early models are used to efficiently give overall estimates of specific
quantities. Later analyses use more accurate mathematical models that require more computational
effort and detailed design information. Still, other mathematical models include physical behaviors
not.representedin-ear-nd.e.l. C o.d c uA i U of' seric s of analyses rmust focus on

the result desired from each analysis, the accuracy of result desired, the state of the design, and the
analysis information available from previous analyses.

Domain, fl. Methods to control idealization due to domain simplifications depend upon how
the geometric simplification effects the solution behavior.
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The first category of domain simplification that must be identified are those that alter te form
of the solution behavior. For example, approximating a smooth boundary with a faceted one can
change the exact values of many quantities to a given mathematical model from smooth to singular.
Depending on the goal of the analysis -such approximations may yield the solution useless [1], or
simply indicate that the values to given solution parameters are not-meaningful in specific areas [3],
[17]. The determination of when these circumstances will-arise requires an analytic understanding
of the basic solution behavior-[1], [2], [18].

A number of techniques are available to estimate and control geometric approximation errors
when the approximations do not alter the smoothness of the solution with respect to the parameters of
interest. A priori error estimates have been derived for specific classes of geometric approximation
[19]. Such estimates can be used as the basis of the development, of a posteriori error estimates
for these approximations. Sensitivity analysis can be used to determine how important geometric
variations may be on solution results. The various techniques for sensitivity analysis from shape
optimization [15] provide a set of tools for this situation. Analytically-based results to idealized
situations can also provide -a useful set of techniques. A specific example of such a technique for
estimating the influence of circular holes in stress analysis is given in [20]

Sensitivity analysis methods can also be useful to estimate the influence of replacing a portion of a
domain by a given set of boundary conditions that do not strictly adhere to a given symmetry situation.
Sensitivity measures to small changes in the boundary conditions approximating the behavior of the
eliminated portion of the domain can provide useful information in the control of errors due to this
type of idealization. At the simpliest level, a high sensitivity indicates a need to include the eliminated
portion of the domain in the analysis. A more appropriate use of such procedures would be to bracket
the variations of solution results based on the expected variations of the boundary conditions used
to approximate the eliminated portion of the domain.

Dimensional reductions and associated mathematical model alterations, 7b. The techniques
available to control dimensional reductions vary greatly in sophistication and cost of application. Since
dimensional reduction can typically be stated as the application of additional behavioral assumptions
on a given mathematical model, the ability to control the approximation errors depends on the ability
to qualify the applied assumptions.

Given a starting mathematical model, the approximation errors introduced by its dimensional
reduction can be controlled by analytically-based procedures if the dimensional reduction can be
represented as a convergent sequence. One example that has been considered is the dimensional
reduction associated with the analysis of plate like domains [21]. The key to this procedure is to
not state a specific assumption on the 'through the thickness' behavior, but to discretize it with a
convergence expansion.

Since dimensional reduction begins with a mathematical model in a dimension higher that the
reduced dimension problem to be solved, there is always the possibility to do comparisons with
various levels of models. A simple example is the comparison of various levels of plate theory
solutions. A more appropriate application of such a concept is that used by Noor [13], [14] that
combined overall-results at the global level with local level calculations on a higher order model.

Several of the other idealization control teci'niques are also useful with dimensional reductions.
The various techniques can be used alone or in combination with others.
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An example where test results are combined with dimensional reduction is the analysis of
structural connections [4]. In this analysis the material the connection bares against is replaced by
a set of nonlinear springs where the stiffness parameters of the springs are determined by matching
the connection analysis behavior to that of a physical connection that was tested.

Material properties, D. The specification and control of material properties must ultimately
rely on the input from physical tests of components designed to measure the parameters required in
the selected form of constitutive relationship.

In many cases the form of mathematical model used is dictated by the form of material constitutive
model required to capture the needed physical behavior. In many cases analytic analyses indicate the
form of constitutive relationship that is meaningful. For example, the theory of plasticity has been
strongly influenced by the desire to employ constitutive forms that demonstrate specific mathematical
properties.

Sensitivity analysis and statistical anclysis have a strong influence on determining the variations
of solution parameters based on expected variations in material parameters.

Boundary and initial conditions, /P. As with the domain approximations, the methods to control
idealization due to boundary and initial condition approximations depend upon how they effect the
solution.

The first category of simplification that must be identified are those that alter the form of the
solution behavior. For example, approximating a distributed load or boundary condition with a sharp
variation can introduce singularities into the solution. These singularities can range from analytic

-- singularities, to non-analytic singularities for which the solution is meaningless [1], [4]. These
situations would be handled with the same types of techniques as domain simplification.

The same techniques available for domain simplification are available when the approximations
do not alter the smoothness of the solution with respect to the parameters of interest.

Discretization, A. The mathematical basis of the discretization process makes it possible to
control the discretization errors through the application of a posteriori error estimation techniques
[5], [6]. Over the past several years these techniques have been developed and combined with
adaptive techniques that automatically control discretization errors through the successive enrichment
of the discretization. These techniques have matured to the point that they are beginning to be
considered for inclusion in commercial analysis codes [22].

In the long term, it is expected that most discretization errors will be controlled by adaptive
analysis techniques. At this time good adaptive procedures to control all discretization errors do not
exist, and even when they do, the overall efficiency of the process may be improved by combining
them with other techniques. For example, rules based on an analytic understanding of the solution
behavior, and/or previous experience can provide a priori information for the development of an
initial discretization. Such a capability is needed when there are no adaptive procedures available to
control the discretization errom. They can also be useful in conjunction with adaptive techniques to
improve the computational efficiency of the analysis process [23], [24].

4. THE GENERATION OF IDEALIZED MODELS
Given a definition of the object of interest and a knowledge of the analysis idealizations to be

( invoked, the task of generating the idealized model in the form needed for the analysis procedure
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must be performed. Historically, the view of this process taken by analysts is that the only definition

of the object, that exists is the idealized model. Considering the broader context of a product design

process, this is not appropriate. The description of the object evolves with the design and is never

necessarily equivalent at any particular idealized analysis model. For sake of discussion, it is assumed

that a computerized representation of the object to be analyzed exists in a design modeling system.

Therefore, the generation of the idealized analysis model consists of the following steps:

1. Alteration of the domain and analysis attribute information based on the geometric simplification
and dimensional reduction idealizations.

2. Specification of the appropriate constitutive laws based on the material property information.
3. Performance of boundary condition idealizations.
4. Generation of a discretization of tuie idealized model as needed for the analysis procedure.

The alteration of the object domain as required to reflect domain simplifications and dimensional

reductions can be performed by the application of an appropriate set of geometric modeling operations.
This can only be done within the context of the modeling system if the geometric modeling tools and
representations available can support the required operations. In general this requires a general non-
manifold geometric representation that can uniquely house any combination of one-, two, and three-

dimensional entities in three space [25], and a complete set of non-manifold geometric operators [26].

To be performed in a reliable manner, the geometric modeling operations required to create the

idealized analysis model domain must operate in an automatic- manner. One key to supporting this
process is the availability of general set of g-,ometric operators that can perform the required modeling

task [27]. To operate effectively in support of domain simplifications and dimensional reductions,

the geometric operators must be able to operate at a more macro-level than the topological entities
typically used to key these procedures. A concept that is popular in design research that can help
support these needs is a higher level representation based on features [28]. Analysis features could be
any portion of the object description for which some specific idealization process will be applied. For,
example the portion of a solid (Fig. 2) that is thin in one direction could be considered a shell feature

idealized by its mid-surface, and the ring beam could be represented by a beam feature. Following
the approach of idealization through features, the idealization processes of geometric simplification
and dimensional reduction would consist of:

1. Geometrically identifying and isolating the analysis features to be idealized [29].
2. Specifying the desired idealization process for those analysis features in terms of an appropriate

set of geometric operations.
3. Invoking the geometric operators needed to idealize the feature.

In addition to the definition of the domain of an idealized model, the input to an analysis procedure

requires the attribute information required to specify the material constitutive relations, the loading

conditions, and the bouw.'ary conditions. The analysis attribute information must also be extracted

from the-object's description in the design system accounting for the required idealization processes.
Since the definition of the analysis attribute information must be related to the geometric definition

of the-domain, he interaction between-the A'dea izatonn pceurs and the design modeling system

is through a general set of geometric operators [27].

An area critical to the reliable creation of idealized analysis models is the ability to discretize the

analysis domain into a valid computational mesh (Fig. 3). The ability to automatically discretize a
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Figure 2. Shell idealization

given domain into a computational mesh is a computer-aided geometric modeling issue that has
received considerable attention in the past several years [30]. One of the most difficult issues
associated with the development of a general automatic mesh generation algorithm is the ability
to determine if the mesh generated is a valid discretization of the domain being analyzed.

The primary source of difficulty in defining a valid mesh is that, until each mesh entity is uniquely
classified with respect to a domain entity of an equal or higher geometric dimension, the geometric
shape of the mesh entity is unknown and it is not possible to determine if the mesh covers the
geometric domain. The determination of the classification of a mesh entity with respect to domain
entities requires consideration of the geometric shape of the domain.

One approach to addressing this complexity is to carefully build the mesh entities from the
lowest geometric order wih respect to the domain entities of the lowest geometric order. In this
manner mesh entities can be properly classified as they are gen-.rated. The topological entities of
vertices, edges, faces, and regions representing 0-, 1-, 2- and 3-dimensional entities provides a
convenient abstraction for discussing this process. Ihe bottom-up approach requires the definition
of mesh entities is the following order:

1. Mesh vertices at the geometric domain vertices

S ( I1

f l



Figure 3. Automatically generated mesh

2. Mesh vertices and mesh edges on the geometric domain edges
3. Mesh vertices, mesh edges, and mesh faces on the geometric domain faces
4. Mesh vertices, mesh edges, mesh faces and mesh regions in the geometric domain regions

Each step in the process must ensure that a geometric entity is covered by the mesh and no non-
existent intersections are created. One problem with this approach is that it is not consistent with
the most popular algorithmic approaches to mesh generation. A less obvious, but more important
issue, is that this approach is not straightforward to apply and ultimately must address the issue of
determining which geometric domain entity a mesh entity is uniquely associated with.

The opposite approach to the issue of determining the validity of an automatically generated
mesh is to generate a mesh without specific concern for the issue of validity and to check and correct
the mesh afterwards. This approach is motivated by the popular Delaunay meshing algorithms (31],
[32], [33] which generates a mesh within the convex hull defined by a set of points placed within
and on.the boundary of an object. In general, the resulting mesh is not a valid discretization of
the domain since the mesh entities cannot be uniquely associated with the domain entities of equal
or higher ge(metric dimension. To address this issue, the concept of a geometric triangulation has
been introduced (32], [33]. A geometric triangulation represents a valid discretization of a domain
into a computational mesh which meets a specific set of topological restrictions, ensures each mesh
entity is uniquely classified, and the mesh is compatible with the geometry. A mesh is compatible
with the geometry if all geometric entities are properly covered by mesh entities with no non-existent
intersections created. For a complete technical description of a geometric triangulation as well as
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Figure 4. Modeling system supporting idealization

an algorithm for converting a Delaunay triangulation into a geometric ti'..igulation see references
[321, '33].

5. MODELING SYSTEM SUPPORTING IDEALIZATION CONTROL

The ability to apply idealization control requires a design modeling system which can house
various levels of analysis idealization with smart design methodologies and engineering analysis
tools. Figure 4 shows the overall framework of an engineering modeling system for mechanical
objects that is specifically structured to support the idealizations used in engineering modeling and
analysis [34], [35].

This system framework is consi':en' vith the azitectures being considered to support design
modeling systems [36], [28], [371. it, doe, not represent an entire design system since it includes
only the model representations and analysis tools. As indicated by Dixon, et al. [36] the analysis
tools only provide the data needed for evaluation in design. However, it is important to note that
the model representations determined most appropriate for supporting analysis idealization processes
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contain both functional and geometric models as in design systems. This level of representation is
needed to support knowledge-based applications and feature representations [28].

The heart of the system is the representation of the object being designed and the modelers that
support that representation. To support the functions necessary in the design evolution of an object, its
representation is housed in linked functional, geometric and attribute model structures, each of which
are controlled by the appropriate modelers. The other operational components of the modeling system
are the applications. The applications include analysis procedures to answer performance questions,
algorithms to alter the design based on analysis results, and procedures to plan the manufacturing
processes, etc. Applications are separated into two groups based on the technology underlying their
implementation, not on the functions addressed. The first group are analytic applications. The vast
majority of the applications in this group are numerically based analysis and optimization procedures.

r The second group are knowledge-based applications. Knowledge-based applications are assumed here
to operate from codified heuristics placed in rule sets.

The task of analysis idealization control falls to the process navigator. The process navigator
interacts with the models, applications, and databases to track the various activities that have been
performed and guide the application of those that are requested. By tracking the idealizations used and
analyses performed to the current point in the design, the process navigator provides the designer with:
-1) guidance as to the next steps in the process, 2) feedback as to the appropriateness of performing the
next task request, and 3) directions to the applications appropriate to performing the requested task.

A primary goal of the process navigator for an analysis application is to provide the best balance
of idealization error control possible. This includes the elimination of invalid combinations of
idealizations [1], [4] and the coordination of idealization control from various sources during the
engineering design process [3].

A process navigator is being implemented in terms of three components: the request interpretor,
the analysis strategist and the process monitor [34],[35]. At the most basic level, the request interpretor
is responsible for accepting a request to perform an operation, determining if the basic information
and capabilities required to perform the task exist, and to invoking the analysis strategist to carry
out the request. The analysis strategist is responsible for formulating and controlling the process
steps required to perform the request. The process monitor is responsible for maintaining information
about the status of the design and the tasks that have been peformed previously. Given an analysis
request and the current state of the design, the analysis strategist must be able to apply the various
levels of idealization error control on each-source of idealization error to produce the most reliable
solution possible. An analysis strategist must employ feedback procedures to exercise the various
levels of idealization. control. Te ability of ,e analysis strategist to interact with the design process
is aided by the process monitor which maintains the appropriate information about the state of the
design and the analysee performed to date. One tool critical to the proper functioning of the process
monitor is the analysis ;oal graph [38] which interacts with the information in the design system.

6. APPROACHES TO THE CONSTRUCTION OF IDEALIZATION
CONTROL PROCEDURES

The reliability of an engineering analysis process can be improved by better idealization control
techniques. This section briefly discusses approaches to providing improved analysis idealization
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control for two common classes of mechanical analyses. In both cases the procedures proposed
rely on techniques that are currently available. It is the combination of these techniques into a set
of analysis idealization control procedures that provides a design engineer with the ability to more
reliably perform various levels of analysis.

6.1 Analysis Idealizations Common to Airframe Modeling
Tie design of the structure defining the airframe is a complex process which employs a number

of levels of structural analyses. The analysis goal graph and idealization control techniques required
to support this design process must include [39], [3]:

1. Simple beam analysis to determine overall load distribution,
2. Internal load distributions based on one-dimensional frame and truss members to determine

member section property requirements
3. Overall static stress analysis representing main members as combinations of one- and two-

dimensional entities employing various levels of idealization rules
4. Overall vibration analysis using appropriate sets of member stiffness and mass property ideal-

ization
5. Component fatigue and failure analyses using appropriate local idealizations and boundary

conditions obtained from the previous analyses

Today the idealization processes used employ rules [40], [41], [16], [39]. These rules are based
on a combination of experience, test results and analytical results, but are applied as a set of rules
that are computerized through a rule base applied through an inference engine. However, as pointed

CIL out by Szabo [42] for the analysis of connections, it is important that the methods of idealization
control become more rational and consistent. This requires the proper application and coordination
of various levels of idealization control possible for these classes of analysis. These range from the
compiled procedures [39] to adaptive procedures based on convergent sequences [21].

One current effort is focused on a prototype implementation of knowledge-based idealizations
associated with the structural analysis of airframes for internal load distributions [40], [34], [35], [38].
The prototype system is being implemente primarily within the framework of the YEE environment
[43] which is used to house and control the functional model (Figure 5) and structural idealization
rules for airframes (Figure 6). The procedures are being implemented within the framework of a
general process navigator so that additional idealization control procedures can be added to the system.

6.2 Geometric and Boundary Condition Simplifications in Stress Analysis
The tools needed for reliable two-dimensional stress analysis of a given mathematical problem in

a cost- effective manner are now available [44], [45], [23], [30]. However, their effective application
in design requires the development of procedures to control the idealization errors associated with the
geometric and boundary condition simplifications present during the design process (Fig. 1). These
geometric and boundary condition simplifications often exist because the design has not progressed
to the point where they are completely defined. However, there is the need to perform analyses
at that time so that design parameters can be properly determined. The range of simple linear
two-dimensional analysis requests that need to be supported during design include:

(
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Figure 5. Functional model for portion of airframe

1. Determine load paths d load transfer of a basic configuration
2. Determine overall deformation and vibration characteristics
3. Determine all areas of likely stress concentrations
4. Evaluate the stress concentrations
5. Determine fatigue and fracture characteristics

Idealizations common to these analyses include:

1. Accounting for smooth cutouts not included in the analysis model
2. Accounting for reentrant comers that are sharp in the analysis model but wili be smooth in the

final design
3. Dealing with load distributions that are not yet fully defined
4. Dealing with support conditions that are not fully defined

Since these idealizations can be performed in conjunction with automated, adaptive analysis, the
majority of the idealization control procedures should employ analysis feedback.

An example of such P feedback procedure has been suggested for determining when circular
holes can be ignored and when they must be included in a two-dimensional stress analysis [20].
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Figure 6. Dimensional reduction idealization for frame member

This procedure uses the results from an analysis in combination with analytic solutions to determine

if each of the candidate holes must be included in an analysis. The first step in the process is to

geometrically determine candidate holes. A candidate hole is one that is assumed to be small enough

to cause only local variations in the load paths through the structure. A candidate hole must be far

enough from a boundary that known analytic expressions could be used as a me aningful indicator.

The second step is to perform a stress analysis with all candidates eliminated. The third step is to

estimate the peak stress around each hole by multiplying the stress determined in the area of the

hole by a corservative stress concentration factor derived from analytic solutions to specific relevant

situations. The analytic stress concentration values are readily available for the basic situations of

concern in engineering handbooks [46]. If the peak stress for the hole is below the threshold of

interest to the design, that idealization is accepted; if it isq above, the idealization must be improved.

Improvement of the idealization could be to simply use the consrvative estimate just obtained, or

perform another generalized analysis including the expected critical holes in the analysis.

Consider the reverse case of a designer wishing to perform a stress analysis of a plate where

there are to be lightening holes, which are not yet defined, but are known to be within specific
limits of size and spacing. The process navigator must invoke an idealization procedure to reduce
the thickness of the plate, based on an estimate of the volume of the holes, to represent the plate's
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proper overall stiffness. Itwould then inve< -the procedure to estmate, the stress concentrations that
would be introduced around the holes and informn the designer if, the stresses around the holes are

expected to be critical.
The methods for accounting for sharp reentrant comers as well as a number of the load and

support simplifications introduce the need to deal with singularities in the solution process. A simple
case is a request to determine the stress concentrations before reentrant comers are filleted. In this
case the process navigator should indicate to the designer that if stress concentration information is to
be extracted from the analysis, a preliminary set of fillets should'be designed for the reentrant comers.
If the analysis is performed with the sharp comers, the adaptive analysis procedures must be modified
to not spend undo effort in those areas. A more difficult situation is the case of point loads or point
supports which introduce non-analytic singularities into the solution. Since it is common at early
stages of design to use such point loads and supports, efforts are required to either eliminate their
influence on the analysis, or to replace them with equivalent approximations that do not introduce
the non-analytic singularities.

7. PERFORMANCE OF AUTOMATED ADAPTIVE SYSTEMS
The combination of automatic mesh generation and adaptive analysis techniques allows for the

reliable control of the idealization errors associated with the mesh discretization for each norm
for which accurate a posteriori error estimates exist. The initial acceptance of these tools by the
engineering community appears to require satisfaction of two conflicting requirements. The first is
that the procedures operate in conjunction with the commercial finite element analysis tools they
currently use. The second is that they are computationally efficient. These two criteria tend to
conflict because most current commercial finite element analysis codes solve cach mesh as a separate
mesh using a direct equation solver. As demonstrated below, the single largest contributor to the
overall computational effort in this case is the solution of the final mesh in the adaptive process.
Another difficulty in convincing many of today's practicing finite element analysts to consider such
techniques is their tendency to compare the total computational effort of an automated, adaptive
system to the computational effort for a single analysis. They tend not to consider the analysis model
building cost or the cost of solving and comparing at least two meshes to gain some confidence in
the solution accuracy.

Initial experience in the application of automated, adaptive techniques indicates the need to
concentrate on the minimization of the computational effort required to solve the stiffness equations.
Consideration will have to be given to the use of iterative equation solvers, which when coupled with
adaptively defined meshes, yields an approximately linear computational growth rate.

To demonstrate the performance of automated adaptive analyses, consider the two-dimensional
linear elasticity problem shown in Figure 7. The problem is solved by adaptive h- and hp-refinement
strategies. In both procedures the mesh is adapted to control the error in the energy norm.

The adaptive portion of the automated h-refinement system consists of error estimation and
local remcshing. The error is calculated from the residuals of the primary solution variable. The
magnitudes of the ,elemental errors are used to determine the levels the elements are to be refined
[44]. The local remeshing procedures in the finite quadtree mesh generator are used to automatically
update the mesh to the requested refinement levels [45]. )

17



2

S2- S.

Q

?33 -b 2.5

8 3

Figure 7. Problem definition

Figure 8 contains the resulting meshes consisting of quadratic elements from the h-refinement
system. Shown is the original mesh with 14.1% error, the second mesh with 5.55% error, the third
mesh with 2.75% error and the final mesh with 1.93% error, where the error is defined as

1=(UU)1/
2

where

77= relative percent error

u = exact strain energy

U = calculated strain energy

The automated hp-refinement system employs an element removal mesh generator designed
to work in conjunction with the hp-correction indication procedures in the system [23]. The
hp-refinement system was defined to minimize total computation cost by using analytically-based
criteria tuned by numerical experimentation[23]. To minimize the computational effort in the
modeling process, error prediction techniques are used to specify the best combination finite element
discretization, h, and the polynomial order, p, needed to just achieve the required accuracy. The
actual solution is carried out using PROBE [47].

The starting mesh for the hp-refinement system is shown in Figure 9a. Three preliminary analyses
at levels p = 2, 3, and 4 are performed to determine information that is needed by the adaptive analysis

procedures. The relative error at p = 4 is q = 12.46%. Based on the feedback of the adaptive analysis
procedures, the preliminary mesh is refined as shown in Figure 9b. Three additional analyses at levels
p= 2, 3, and 4 are performed on the refined mesh. The relative error in the analysis of the refined
mesh at p = 4 is q/ = 3.49%. To achieve less than 2.0% error in the energy norm, the adaptive

procedures predicted the need for one additional layer of small elements around each of the two

singular points, and a polynomial level of p = 5. One additional layer of small elements is created
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c) d)
Figure 8. Adaptively refined meshes at a) 14.1%, b) 5.55%, c) 2.75% and d) 1.93% error.

around both singular points in the mesh shown in Figure 9b and an analysis is performed at level p
= 5. The relative error in the final analysis is n7 = 1.28%.

Results of the h- and hp-refinement systems are shown in Figure 10. Included with the
comparisons of the above mentioned adaptive analysis systems, are the results from 3-noded linear
elements in conjunction with adaptive h-refinement (48]. Figure 10a presents the relative percent
error in the energy norm versus the numbcr of degrees of freedom, and shows thatL- U lip-itfinement
system reduces the error in the mesh with less degrees of freedom than that used by the h-refinement
system, and the 6-noded h-refinement meshes reduce the error faster than the 3-noded h-refinement
meshes. This is to be expected.,
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a) b)
Figure 9. Adaptively refined hp meshes: a) preliminary mesh, b) final mesh

Figure 10b contains the plot of the relative percent error versus total solution time on a VAX
6320. Each point on the plot corresponds to the total computational effort required to reach that
point. This includes all mesh generation, equation formulation, equation solution and error estimation
efforts. In both systems the mesh generation process is under two percent of the total cost, and error

-! estimation is under fifteen percent of the cost. The dominate cost of the process is the solution of
the finest mesh. Both procedures employ direct equation solvers common to finite element analysis
of linear elliptic problems (a skyline solver for the h-refinement systems and a frontal solver for the
hp-refinement system). The reduction in total solution time for the hp-refinement system over the
h-refinement system (Figure 10b) is greater than the reduction in numbers of degrees of freedom
for a given percent error (Figure 10a). The improvement is due to the nature of direct equation
solvers and the relative cost of solving the adaptive h- and hp-refinement meshes. Using the direct
solvers, the time needed to solve a set of stiffhess equations is proportional to the number of solution
variables times the square of the average wavefront or skyline. The degrees of freedom used to
define the stiffness matrices of the elements in PROBE [47] are constnicted in such a manner that the
average wavefront in the hp-refinement system grows in a manner similar to that experienced in the
h-refinement system. Therefore, the total solution times required for adaptively defined meshes of
nearly equal numbers of degrees oi freedom is the same. It was also observed that on the adaptively
defined meshes produced by both systems, the average wavefront growth is nearly linear with the
number of degrees of freedom. Therefore, the computational advantage of the hp-refinement system
over the h-refinement system is due to the combination of the following four factors:

1. Solution times for equal number of degrees of freedom nearly the same for both systems
2. Nearly linear growth of average wavefront with number of degrees of freedom for both systems
3. Solution time proportional to average wavefront squared
4. The need for a larger number of degrees of freedom to reach the same level of accuracy in the

h-refinement system
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Figure 10. h- and hp-refinement results: a) relative % error versus degrees of freedom, b)
relative % error versus total computational time required to reach a given relative % error.

The fact that the h-refinement procedures may use one or two additional refinement steps is not a
major contributor to the difference in total computation time. Relative to the- cost of the solution of

(the last mesh, the contribution from the solution of additional intermediate meshes is small (23].
It is important to note that the results on computational times presented here are specific to the

procedures and techniques presented for the automatic solution of plane elasticity problems. Relative
changes in any of the factors important to the major contributions to the computational effort will
influence the relative advantage of one method over another. Based on the experience gained to date,
efforts to improve procedures should concentrate on reducing the solution effort required to solve
the last set of meshes.

8. CLOSING REMARKS
This paper has presented a general discussion of analysis idealization control within engineering

design. An approach and framework to support the application of analysis idealization control tools
was presented.

The need for design engineers to remain competitive by applying the most advanced analysis
techniques available underscores the need to place an emphasis on the development of reliable
idealization control techniques for those tools.
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MIXED FINITE ELEMENT METHODS FOR ELLIPTIC PROBLEMS*

DOUGLAS N. ARNOLD t

Abstract. This paper treats the basic ideas of mixed finite element methods at an introductory level.
Although the viewpoint presented is that of a mathematician, the paper is aimed at practitioners and the
mathematical prerequisites are~kept to a minimum. A -classification of variational principles and of the
corresponding weak formulations and Galerkin methods-displacement, equilibrium, and mixed-is given
and illustrated through four significant examples. The advantages and disadvantages of mixed methods
are discussed. The concepts of convergence, approximability, and stability and their interrelations are
developed, and a rgsum6 is given of the stability theory which governs the performance of mixed methods.
The paper concludes with a survey of techniques that have been developed for the construction of stable
mixed methods and numerous examples of such methods.

Key words, mixed method, finite element, variational principle

1. Introduction. The term mixed method was first used in the 1960's to describe
finite element methods in which both stress and displacement fields are approximated as
primary variables. We begin with the most classical example; the system of linear elasticity.

The equations of linear elasticity consist of the constitutive equation

AS = 6(u) in 2

and the equilibrium equation

divS =f in f2.

Here fl denotes the region in three dimensional space, R3 , occupied by the elastic body,
U : f2 -+ R3 denotes the displacement field, £(it) denotes the corresponding infinitesimal

strain tensor, (i.e., the symmetric part of the gradient of u, fi(u) = (ui,j + ui,i)/2)), f

denotes the imposed volume load, and S :2 --- R3 x3 (the space of symmetric 3 x 3 tensors)

denotes the stress field. The divergence of S, divS, is applied to each row of 8, so that

(divS)i = )j si,j. The material properties are determineal by the compliance tensor A

which is a positive definite symmetric operator from R3X 3 to itself,1 possibly depending

on the point X E f2. The constitutive equations can equally well be written as

5 = CE(u) in o

*This work was supported by, NSF grant DMS-89-02433.

fDepartment of Mathematics, The Pennsylvania State University, University Park, Pennsylvania 16827.
1This means that the action of A can be written as (AS)ij = Eklaijklski with the components

alqki satisfying the usual major symmetries aijkl = aklij, minor symmetries aijkl = apjkl, andpositivity
condition Eijkl aijkls ijskl "y ij e ,.1 for all S, where y> 0.



where the elasticity tensor C : R3x3 -+ R3 X 3 is the inverse of A. This example also serves

to illustrate our font conventions: vector quantities are notated in boldface, second order

tensors are in script, and fourth order tensors are sans serif.

To determine a unique solution, we supplement the elasticity equations by the boundary
conditions

Uird = 9d and Sn jr, = 9

where rd and rt are complementary parts of 92 and 9d and gt give the displacements and

tractions prescribed on rd and rt respectively.

Mixed methods for the elasticity prbblem are mostly based on the following mixed

variational principle which is a form of the Hellinger-Reissner principle:

The solution (S,u) of the elasticity problem can be characterized as the

unique critical point of the-functional

L(Tv)= AT:T+dtivT.v-f. - 9d(Tn)

over the space of all symmetric tensorfields T satisfyifhg the traction bound-
ary condition Tnjr, = gt, and all vectorfields v.

f Indeed, if we set the first variation of L with respect to T equal to zero, we get the equation

(A S: T+div T u) = 'P d 9d (Tn)

for all T for which Tn vanishes on rt. Integrating by parts, we obtain the constitutive
,q.etion and displacement boundary condition. Taking the variation of L with respect to

v leads immediately to the equilibrium equation. Note that in the form of the Hellinger-

Reissner principle presented, the traction boundary condition is essenial-it is imposed

a priori on the space where the stress tensor is sought-while the displacement boundary
condition arises naturally from the variational principle.

To make the variational principle precise, we must -state over what space of functions

T and v are to vary. The appropriate choice for T is the subspace of 7-(div) (symmetric

tensorfields which are square integrable and have square integrable divergence) of fields
satisfying the traction boundary condition, and for v the space L2 of all square integrable
vectorfields. The reader who is uncomfortable with these function spaces need not be

concerned: suffice it to say that they are chosen in a fairly natural way so-that the-integrals

involved in the definition of L make sense.

A key point, which is characteristic of mixed variational principles, is that the pair
(S, u) is not an extreme point of the Hellinger-Reissner functional. It is a saddle point. In

C fact
L(S,v) < L(S,u) < L(TIu)
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A ,for all T E 'H(div) satisfying Tn Jr, = gt and all U E L2 . It follows from this saddle point

t condition that

(1) sap inf L(T,v) = L(S, u) and inf sup L(T,v) = L(S,u).
vEL2 TE6i(div) TEW(dv) vEL2

Tn It, =gt Tn Ir, =gt

Now, because u satisfies the constitutive equation, £(u) is square integrable. It follows

(from Korn's inequality) that the gradient of u is square integrable, i.e., u E H'. Let us

set, for any v E 1.2,
E(v)=- inf L(T,v).

Tn Irt--gt

Then E(u) = -L(Su) and we have from (1) that

-E(u) = sup -E(v),
vEL

2

and, a fortiori,
-E(u) = sup -E(v)

vEH'

or

(2) E(u) = inf E(v),
vEH1

i.e., the displacement field u is characterized as the minimizer of the functional E over H.
We shall show in a moment that for any v E H

,f (1C S(v):E(v) + f.v) - fr, 9t .v, ifvlrd, = 9dE(v) 00 otherwise.

This permits us to interpret (2) as the following variational priniciple, which is nothing

but the usual prinicipal of minimal potential energy energy.

The displacement field u solving the elasticity problem minimizes the func-
; tional

'~ (C ():S(v) + f~v_ gt - V

.ver.th -,.. s. of all vect, orfields satsyin' the displacement boundary con- I

ditions.

Thus, starting from the Hellinger-Reissner mixed principle, 've have derived the standard
( - displacement variational principle. Note that for the lattef the displacement boundary

condition is essential, and the traction condition natural.



( To verify (3) we integrate by parts to get

L(T,v) =j('AT:T-T: £(v) -f'v) +1 9t'V+j(V-9d) (Tn)"
fn G

Now if v - g doesn't vanish on I'd, then we may take T such that Tn is an arbitrarily
large negative multiple of this quantity on rd, and we can arrange as well that T decay
quickly away from M 2 so that its L 2 norm is arbitrarily small. It follows that L(T,v) can
be made negative with arbitrarily large magnitude by appropriate choice of T. Thus, if

")Ir, 5 9d, then E(v) = oo. On the other hand, ifvlr, = 9d, then

L( r,v) =T: - : E(v) - f.-V + f gt'v.

This quantity is clearly minimal when AT = £(v), i.e, when T = C £(v), and in this case

L(T,v) = S~C(v) £ (v) - f~ -i j gt -

as claimed.

We have seen how the stress field can be eliminated from the mixed variational princi-
ple, leaving a variational characterization of the displacement. In a similar (simpler) way

we can eliminate the displacement and obtain the following variational characterization
of the stress: of all tensorfields which satisfy the equilibrium equation and the traction
boundary conditions, S minimizes the complementary energy functional

Ec(T)=j1AT:T- 
d g'(Tn)•

These three basic variational principles for linear elasticity are summarized in Table 1. For
each of these variational principles, the critical point is determined by the vanishing of the
first variation, which leads to a weakly formulated boundary value problem. The weak
formulations corresponding to our three variational principles are given in Table 2.

Each of the three variational principles may be discretized by seeking a critical point
of the relevant functional over a finite dimensional subspace'(presumably of finite element
type) of the admissable trial functions. Equivalently, in the weak formulations we can
substitute the function spaces (H1 , 7-(div), and L2) with finite dimensional subspaees. The
resulting discretization methods are termed Galerkin methods. For the primal principle
the resulting Galerkin methods are termed displacement methods. For the dual principle
such methods are commonly referred to as equilibrium methods. For the mixed variational
principle we obtain mixed methods. In all three cases, the determination of the discrete
solution ultimately reduces to the solution of a finite system, of algebraic equations.
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Primal variational principle. Among all kinematically admissable
vectorfields the displacement field is the unique critical point of the
energy. This critical point is a minimum. I.e., u E H" uird = 9d,

and
E(u)= inf E(v).

vEH
v Ir =g9d

Dual variational principle. Among all statically admissable ten-
sorfields the stress fi(ld is the unique critical point of the comple-
mentary energy. This critical point is a minimum. I.e., S E 7i(div),
divS = f, SnrIr, = 9t, and

E(u) = inf EC(T).
TE'H(div)
divT=f

Tn Irt -gt

Mixed variational principle. Among all tensorfields assuming the
prescribed tractions on rt and all vectorfields, the stress and displace-

ment fields give the unique critical point of the Hellinger-Reissner
functional L. This critical point is a saddle point. I.e., S E 'H(div),

Snl r, = gt, u E L2 , and

sup L(S,v) = L(S,u)= inf L(T, u)
vEL2  TEWt(div)

Tnlr,=gt

TABLE 1. Basic variational principles for linear elasticity.

2. Other examples. Most of the elliptic problems arising from mathematical physics

and engineering admit analogous variational formulations. We list some of these here. For
simplicity we ignore the boundary conditions.

The scalar second order.elliptic problem

As = grad u, divs=f,

which models, e.g., a stationary thermal distribution with temperature field u and flux
field s, is entirely analogous to the linear elasticity problem.

The Kirchhoff-Love plate model may be written

AM = -glZAV grad w, - div div. = f.

. . . . . . . . . . . .



Primal problem. Find u E H1 such that U~rd -- gd, and

jC'(u): F(V) -Vf jtv

for all V E H1 such that v r = 0.

Dual problem. Find S E 1"/(div) such that divS = f, Snir, =t,
and

jAS:T=fr gd (Tn)

for all T e 7-(div) such that divT = 0 and Tn r, = 0.

Mixed problem. Find S E 7H(div) satisfying Sn Ir, = gt and u E L 2

such that

j(AS:T+divT:u+divS:v)=jf.V.- :9d *(Tn)

for all T E H(div) satisfying Tn Irt = 0 and all v E L2 .

TABLE 2. Weak formulations associated
with the three variational principles.

(Here (glAD grad w)ij = w,ij is the matrix of second partial derivatives and div div M =

Ejj mijij.) The mixed variational principle characterizes the moment tensor A and the
transverse displacement w as a saddle point of the functional

J QAM: M +wdiv divM +fw)

whereas the primal principle asserts that w minimizes the energy functional

J (1C(O7ZAD grad w) : OR-AD grad w - fw)

where C = A- .

In Stokes flow, the velocity u and pressure p satisfy

div CE(u) + gradp = f, divu 0.
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" '" Together they are a saddle point of the the functiohal

J 2cE(u):E(u) + pdiv u+ fu) •

For Stokes problems the priml variational princip],,, which characterizes the pressure
independently of the velocity, is rarely used. This is because it involves the inversion of the

differential operator div CE(-), which is rarely practical. Oni the other hand, equilibrium
methods, based on the dual principle that io minimize

f (.CE(u):E(u) ± fu)

over divergence-free fields, are occasionally used.

The mixed weak formulations for all four examples are listed in Table 3. For simplicity
we continue ,to ignore boundary conditions, and also do not insist on the precise function
spaces involved. Notice the characteristic form shared by all the examples.

3. Advantages and disadvantages of mixed methods. A number of reasons have
been put forth to prefer mixed methods over displacement or- equilibrium methods in some
situations. First of all, equilibrium methods are rarely used in practical computation due to
the difficulty of creating finite element spaces incorporating the necessary constraints (the
conditions of static admissability and, in particular, the equilibrium condition in the case
of elasticity). Thus the practical choice is usually between the primal-based displacement
methods and the mixed methods. For some problems, such as the Stokes problem, primal-
based methods are impractical. For such problems the mixed methods are the simplest
and most direct alternative and are widely used.

For the other examples, however, the most basic methods are primal-based. A com-
monly stated reason to prefer mixed methods in these cases is that the dual variable (stress
for elasticity, flux for thermal problems, moments for plate bending) is often the variable
of most interest. For primal-based methods this variable is not a fundamental unknown

and must be obtained a posteriori by differentiation, which entails a loss of accuracy. For
the mixed methods, however, the dual variable is computed as a fundamental unknown.

Of course, this argument is only heuristic. Its correctness depends on the available mixed
finite element spaces and primal finite element spaces, the" accuracy they offer, and the
computational work they require to solve the corresponding discrete problems.

Another common motivation for the use of mixed methods is the avoidance of C1

elements for plate bending and other fourth order problems. This is because the mixed
functional for plate bending involves no more than two derivatives in any term and hence,
after a suitable integration by parts, may be evaluated on finite.element spaces with merely
continuous elements. The primal variational functional, hoivever, requires the use of C1

elements (or non-conforming elements).
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f(
Elasticity: Find S and u such that

j(AS:T+divT u+divS v) f j V

for all T and v.

Scalar second order: Find s and u such that

j (As:t + divt' u + divs' v)= j f "v

for all t and v.

Plate: Find M and w such that

f (AM:A+divdv:A(w+divdiv:Mv)= jfv

for all Y and v.

(Stokes: Find u and p such that

[C(u):E(v) + divv p + divu q] = f .v

for all v and q.

TABLE 3. Mixed weak formulations for various problems.

Another advantage of mixed variational principles is their robustness in the presence
of certain limiting and extreme situations. For example, in the case of linear elasticity,

the compliance tensor A becomes singular in the limit of incompressibility. Consequently
its inverse, the elasticity tensor C, blows up: it is very large for nearly incompressible
materials and infinite for incompressible ones. (E.g., in the istropic case

AT= - T tr(T)), , CT = --L T+ tr(T)." ,

with I denoting the identity matrix and tr the matrix trace operator. As the Poisson ratio
v T 1/2, A tends nicely to the limiting value

AT T - 1 trT))

8



but C blows up.) A analogous situation holds for the Reissner-Mindlin plate model whereK A the robustness is with respect to the plate thickness. Robustness properties of mimed
methods have also been reported in other situations, as well. That is, mixed methods have
been observed to perform significantly better than closely related displacement methods
in particular applications that involve some extreme or limiting behavior. For example,
Ewing, Wheeler, ,and others have reported superior computations of pressure (which sat-
isfies a scalar second order elliptic problem arising from Darcy's law) via mixed methods
when simulating the miscible displacement of oil from a porous media [12], [13]. Marini
and Savini [20] have reported improved results in semiconductor device modelling through
the use of mixed methods. In each case, the mixed methods seem to be exhibiting greater
robustness with respect to the roughness of the coefficients of the equations. (In both
problems there is a sharply defined front across which the coefficients change rapidly.)

In addition to the situations in which mixed methods are used explicitly, there are a
number of methods which have been proposed in the literature which, while resembling
displacement methods, can be shown to be equivalent to mixed methods. Such methods are
called generalized displacement methods since they lead to discrete systems involving only
degrees of freedom associated to the primal variable. However the discrete system differs
from what would be obtained by straightforward discretization of the primal variational
principle. The best known examples are the reduced and selective integration methods in
which all or some of the terms of the primal energy functional are intentionally integrated
with low accuracy. This apparently paradoxical procedure of reducing the integration
accuracy in order to increase the solution accuracy was poorly understood and quite con-
troversial when first introduced. In almost every case where it is successful, however, it can
be shown that such a method is equivalent to a rather natural mixed method with exact,
or at least accurate, integration [19]. In a number of cases the theory of mixed methods
can be applied to provide a complete understanding and justification of reduced integra-
tion procedures. (Cf. [1] where the theory of mixed methods is used to give a complete
analysis of reduced integration and standard displacement methods for the Timoshenko
beam problem and [18] where some reduced integration methods for the Stokes problem
and Reissner-Mindlin plate are analyzed as mixed methods.) A similar situation holds
for other generalized displacement methods, such as ones inV'olving harmonic averaging of
rough coefficients [6] and interpolation [8] in the computation of the stiffness matrix. In
addition a number of non-conforming displacement methods ,can be viewed, and best ana-
lyzed, as mixed methods [2]. In our view, this constitutes one of the most important roles
of the theory of mixed methods: it provides tools to design and analyze high performance
generalized displacement methods.

There are also obvious disadvantages to mixed methods in comparison with displace-
ment methods. Because both the primal and dual variable are approximated simulta-

( " neously, the discrete system will typically involve many more degrees of freedom than a
displacement method which uses a similar space to approximate the primal variable (but

9



, does not directly approximate the dual variable). Morever the fact that the primal vari-

ational principle is an extremal principle is reflected as positivity of the discrete system.

Thus displacement methods for all the problems we have considered lead to positive def-
inite algebraic systems. Since the mixed variational principal is a saddle point principal
rather than an extremal principal the discrete system will be indefinite, possessing both
positive and negative eigenvalues. Consequently a number of solution methods, both direct
methods such as Cholesky decomposition and iterative methods like conjugate gradients,
can not be applied directly.

Both these objection can often be overcome in practice by implementing mixed methods
as generalized displacement methods. A simple case is when the finite element space for
the dual variable does not incorporate any interelement continuity, i.e., all the degrees of
freedom associated with the dual variable are internal to the elements. In this case the dual
variable can be eliminated at negligible cost (by static condensation). The resulting system
involves only the primal degrees of freedom and is positive definite. In fact many reduced
integration methods arise in this way. More generally, when all the degrees of freedom of
the dual variable are either interior to elements or lie on element edges (in two dimensions)
or faces (in three dimensions)-but not at vertices-there is a quite general procedure to
eliminate them at little cost [2], [15]. In contrast to the completely discontinuous case,
this procedure adds additional degrees of freedom for the primal variable. The generalized
displacement methods which arise typically use nonconforming elements.

A third possible objection to mixed methods is that they are subject to possible in-
stabilities which do not arise for standard displacement methods. Thus the finite element
spaces used to discretize extremal variational principles may be selected considering only
their approximation properties and convenience of implementation. However for mixed
variational principles, when spaces are selected on this basis alone they will almost al-
ways give poor results. For good convergence, the spaces must also satisfy some rather
subtle stability conditions. Consequently the theory of mixed methods is more involved
(and more interesting) than for displacement methods, and ,the design of effective mixed
methods requires more expertise than for displacement methods. The stability properties
of mixed methods, which form the heart of their mathematical theory, will be the subject

of the remainder of this paper.

4. Approximability, stability, and convergence of Galerkin methods. All the
weak formulations we have -considered-primal, dual, and mixed-can be written in the
form

(4) Find u E V such that B(u, v) = F(v) for all v E V,

where V is some function space, B : V x V -- R is a bilinear form, and F : V -- R is a linear
form.* Indeed any linear problem arising from a variational principle (i.e., any problem

*If the problem involves inhomogeneous (i.e., nonzero) essential boundary conditions, then u here

10



in which the solution is characterized as a critical point of some quadratic functional)

has this form (although the weak form is more general-it applies to problems that don't

have a variational principle). To solve such a problem by a Galerkin method, we choose

a finite-dimensional subspace Vh of V (typically a space spanned by a convenient set of

finite element shape functions), and determine the approximate solution u, by the the

same weak formulation, except that both the trial space where the approximate solution

is sought and the space of test functions over which v varies are replaced by Vh:

Find Uh E Vh such that B(u, v) = F(v) for all v E Vh.

If the weak formulation arises from a variational principle, as in o.rX examples, this is

equivalent to discretizing the variational principle by seeking a critical point in the subspace

Vh.

We shall be concerned with three properties of such Galerkin discretizations. Con-

vergence measures the the smallness of the error u - Uh between the exact solution and

discrete solution. Good convergence properties are the fundamental goal of any numerical

method. Approximability measures the error in the best approximation of u by elements

of Vh, i.e., the smallest possible error between the exact solution u and any element of the

discretization space Vh. Note that approximability depends on the choice of the space Vh

and the exact solution u, but not on the particular problem under consideration. The con-

vergence achieved by a method is clearly limited by the approximability of the subspace,

but good approximability does not guarantee good convergence. The missing ingredient

turns out to be stability, which refers to the continuity of the mapping from the data F to
the discrete solution Uh.

To quantify these notions it is necessary to introduce norms to measure differences

between functions. Let ijvj[ denote a norm on functions v E V (this simply means that livII
is positive for any nonzero v, and that triangle inequality and the homogeneity condition

Ilcvil = Iclilv]l hold). We will always assume that the norm is chosen so that the bilinear
form B is bounded, i.e., that there is a constant K such that

(5) B(vw) < KlIvllllwll

for all v and w in V. It is usually straightforward in practice" to choose a norm so that (5)

holds with K not unreasonably large. For example if

B(v,w) = j agradv. gradw + b . gvadvw + cvw,

represents not the solution but rather the difference between the solution.and some other, arbitrarily chosen
( but fixed, function satisfying the essential boundary conditions. To avoid this technical complication, which

is not relevant here, we shall henceforth assume that any essential boundary conditions are homogeneous.
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cthe natural choice is

1IIl = fI gr(adv 2 + Iv12,

which is the Sobolev HI norm, and, then K would depend in a simple way on bounds for
the coefficients a, b, and c. For the form

B((s,u), (t,v)) = JAs:t+ divt. u + divs* v

the natural choice of norm is

II(s,u)I =/fI div s12 + Is12 + JU12.

This is the H(div) norm on s and the L 2 norm on u. The norms which arise naturally in
this way are usually of practical significance. E.g., for displacement methods for elasticity,
the natural norm is the energy norm. Of course we may be interested in the convergence
of our method in other norms than the natural one (for example, we may be interested
in the maximum of the stress rather than its root mean square). Convergence analysis in
other norms thaa the natural one is possible, but involves further complications, and it is(usually necessary to understand the convergence in the "natural norm" as a first step. In
this paper we shall only consider convergence in the natural norm for the problem.

Having introduced a norm on V it is clear how to measure convergence and approx-
imability, namely by the quantities

Iu -uhIl and inf Ilu -vi
vE Vh

respectively. To quantify the notion of stability we must also have a norm on the space of
functionals on V. For this purpose we use the dual norm defined by

IIF.l = sup Iv
O:vEV Ilvll

for F: V --+ R. Then the stability constant for the Galerkin method is given by

Ch = sup hi.
F:V-*R 11"FiI

That is, for any data F we consider the solution Uh to* the discrete problem, and measure
the size of Uh compared to the size of F. The largest value this ratio achieves, for any
possible data F, is the stability constant. If we think of the discrete problem as a matrix -

equation, then the stability constant is just the norm of the inverse matrix. With this
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( notation, we can state the fundamental relation between convergence, approximation, and
stability:

1U-Uh 1 I ICh inf 11u-vI
-- E Vh

Since the constant K will generally not bc -large if the norm is chosen reasonably, this
relation says that if the stability constant Ch is not large, then the error in the Galerkin
solution will not be much larger than the error in the best approximation. To clarify this
further, consider a sequence of subspaces Vh parametrized by a positive number h tending
to zero (which could, for example, represent the mesh size, as in, the standard finite element
method, or the the inverse of the polynomial degree, for the p-version of the finite element
method and spectral methods). Suppose that tl.e spaces become more and more accurate,
in the sense that

lim inf IIu-vII=0.
h-O vEV

Then if the stability constant Ch remains bounded as h -- 0, it follows that Uh ck-...erges
to u at the same rate as the best approximation. If, on the other hand, C- --+ +00 quickly
enough, in general Uh will not converge to u at all as h -- .0. If Ch -- +0o slowly, then
Uh may still converge to u, but generally at a slower rate than the best approximation. In
the case where Ch stays bounded we say that our method is stable (here method refers
to the whole sequence of Vh, i.e., includes the mesh refinement or degree enhancement
procedure). In summary, if the method is stable, then the approximate solution converges
to the exact solution at the same rate as the best approximation error.

Remark. This basic result can be extended in two ways to cover the majority of linear
finite element applications. (Many further extensions are possible as well, including io
nonlinear problems.) First, we have only considered Galerkin methods where the trial space
(in which Uh is sought) and the test space (over which the test function v varies) are the
same space Vh. The standard mixed methods are of this sort. However, the fundamental
error bound above applies equally well to the case of Petrov-Galerkin methods where
different spaces are used. Second, we have only considered conforming methods in which
the discrete problem is to find uh E Vh such that B(u,v) =F(v) for all v E Vh, with the
space Vh C V. If Vh 0 V or if we use an approximate bilinedr form Bh or an approximate
linear form Ph on the discrete level which is unequal to the corresponding exact form B
or F (e.g., because of numerical quadrature), then the mdthod is nonconforming. For
nonconforming methods the discrete equations

.wh(Uh,'V) = Ft(v) for ally E Vh

will in general not be satisfied by the exact solution u. The degree to which the ex-
act solution fails to satisfy the discrete equations is called the consistency error. If the
consistency error is appropriately quantified, the fundamental principle above extends to

13



non-conforming methods as follows: if the method is stable, then the error in the Galerkin
solution is bounded by a multiple of the sum of the approximation error and the corasis-
tency error. In this paper we will continue only to consider conforming methods, for which
the consistency error is zero.

5. Stability of mixed methods. The basic theory sketched in the last section
applies equally well to displacement methods and mixed methods. For example, consider
again the elasticity problem, and for simplicity suppose that the boundary conditions are
for vanishing displacement on the whole boundary (rd = 8Sl, gd = 0). For the primal
formulation the bilinear form B in (4) is then

(6) B(u,v)= / C6(u): S(v) for U, VEf',Jn

(i is the subspace of H 1 of functions vanishing on the boundary), while for the mixed
formulation of this problem

B((S,u),(T,v)) = J(AS : T + divT : u+ divS :v) for (S, u), (T, v) E 7-(div) x .2

(cf. Table 2). A major difference between the two cases arises when we try to find finite
element spaces which yield stable approximations. For displacement methods there is no(difficulty. In fact any choice of subspaces Vh C yields stable approximation. This is
because the bilinear form (6) is coercive, that is, the inequality

B(v,v) > a llvll for all v E V

holds for some positive constant a. (This is ensured by Korn's inequality, which asserts
the existence of such a constant a depending only on the domain 1. In fact the primal
formulations for all our examples are coercive.) Now the discrete solution Uh E Vh is defined
by the equations B(Uh, V) = F(v) for v E Vl,. Setting v = uh and invoking coercivity and
the definition of the dual norm I" l we get

alUhll2 _ B(uh,Uh) = F(uh) < IIFIl.*lluhl

whence
I1 ,,,1 < Ce-llFII..

Thus the stability "onstant Ch for this discretization is bounded by 1/ae no matter how the
subspace Vh is chosen. Consequently the error will be of the same order as the error in best
approximation. The choice of subspace need therefore only be guided by considerations
of approximability and efficiency of implementation. In short, Galerkin methods based on
coercive formulations are always stable.*

C *Ilere we use the fact that the test and trial spaces are identical. Petrov-Galerkin methods based on
coercive formulations are not necessarily stable.
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S 4The situation for mixed methods is altogether different. For mixed methods the space

V decomposes as the product of two spaces V = S x W and B has the special form

(7) B((s, u), (t, v)) = a(s,t) + b(t, u) + b(s, v)

with a : S x S - R and b : S x W -4 R bilinear. One consequence is that for mixed

formulations the bilinear form is never coercive and stability is by no means automatic.
In fact elements which are chosen without due regard to stability will' usually prove to be
unstable. For example, from a naive point of view the simplest, most appealing element
for the Stokes problem is the linear velocity-constant pressure element shown in Figure la.
However the stability constant for this element is co and the resulting discrete system of
equations is singular on most meshes. This element is completely useless.

U p U p

FIG. IA. An unstable Stokes element. FIG. lB. A stable Stokes element.
( .

For the Stokes problem the bilinear form B takes the form (7) with

a(u,v) = j C(u): £(v) for u, v E 1l,

b(q,v)=jqdivv for qEL2, vEA t.

Note that in this case that, although B is not coercive, at least a is. In this case it can
be shown that the stability constant may be bounded in terms of the reciprocal of the
coercivity constant a for a and the reciprocal of the quantity

(8) Ph = inf sup b(s,v)
vEWh sESh 11S1111'II

In particular if we choose a sequence of Sh and Wh for which /3h stays bounded away from
zero, the corresponding method is stable. The condition that Ph stay bounded above zero
is known as the second Brezzi condition or LBB condition..

Notice that as the space Sh increases, for fixed Wh, the constant Ph increases. In
other words, for the Stokes problems (or, more generally, problems for which the a form

( is coercive), enrichment of the space Sh increases stability. For example the quadratic
velocity-constant pressure Stokes element, shown in Figure 1b, is stable [14].
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r"However the condition that the a form be coercive is not satisfied for most mixed

methods. In fact, of the four mixed formulations presented, only that for the Stokes

problem has this property. For the elasticity problem, for example, we have a(T, T) =

fn AT : T. Since it is possible to find T which is bounded by I everywhere but for
which the divergence of T is arbitrarily large, there cannot exist a constant a such that
a(T,T). > ITII (div) for all T in IY(dtv). So the'a form is indeed not coercive.

However, it turns out that one can get by with a weaker condition than coercivity of
a on S, namely coercivity on a particular subspace of Sh. More precisely, suppose that
there exists a positive constant ah such that

(9) a(z,z) > ahlIZIl for all z E Zh

where
Zh = { z E Sh I b(z, v) = 0 for all v E Wh}.

Then the stability constant may be bounded in terms of the reciprocals of the constants Ceh
in (9) and Ph in (8). Thus if for a sequence of subspaces Sh X Wh the cah remain bounded
uniformly above zero (this is the first Brezzi condition), and the Ph do likewise (second
Brezzi condition), then the resulting method is stable. This is the content of Brezzi's
theorem [10].

Let us briefly indicate the idea behind the theorem. Stability refers to the invertibility
of the matrix representing the discrete problem, and the stability constant is the norm of
the inverse matrix. For mixed methods, the matrix has the form

(10) ( ShWh Wh "

The space Zh introducCa :ibove is the nullspace of the B. Therefore, if we partition Sh as
Zh x ZhL) where Z1- denotes the orthogonal complement of Zh in Sh, then the action of B
on Sh may be written as

(0 Z Wh

where 9 denot - the restriction of B to ZJ-. Now the second Brezzi condition just asserts
the invertibility of 3. Similarly, let us decompose the action of A as, say,

Thus f. is the matrix associated with the bilinear form a restricted to Zh X Zh, and the
firs Brenzzi1 condition simply asserts the invertibility of thi1s operator. The whole mnatrix
(10), rewritten in terms of these new notations, is

(.4 Q hZ

-(0 0 W{W1

16



or, rearranging rows and columns,

I) A Q):j~h { .h
0 0 Wh

From the upper triangular form, it is clear that the invertibility of (which is equivalent

to the invertibility of 9t) and the invertibility of 4 are together are necessary and sufficient

for the invertibility of the whole matrix.

While Brezzi's theorem furnishes us with relatively concrete conditions which yield

stability, the verification of these conditions can be quite difficult. A number of analytic
techniques have been developed that ease the task some what, for example, localization
theorems [9], the use special mesh-dependent norms [7], etc. We shall not go into any of

these techniques here, but in the next section we discuss a number of elements that have,
in one way or another, been shown to be stable.

6. The construction of stable mixed elements. In § 4 we saw that the accuracy
of a finite element discretization is determined by the approximability of the exact solution
by the finite element subspace and the stability of the discretization. These two properties,
together with implementational issues, furnish the major factors for the construction and
evaluation of the finite element spaces to be used. In § 5 we saw that stability is automatic
for coercive methods, such as most displacement methods, so that the finite element space
can be chosen on the basis of approximation and ease of implementation alone. However,
for mixed methods the question of stability is paramount.

Various techniques have been developed for the design of stable mixed elements. In
this section we review some of these techniques and some of the resulting elements. We
emphasize that this review is by no means exhaustive, neither with regard to the techniques
nor to the resulting methods.

As remarked above, for the Stokes problem, in which the a form is coercive, stability
can always be achieved by adequate enrichment of the velocity space. There are a number
of ways to enrich the space. For example, the unstable linear velocity-linear pressure
Stokes element may be stabilized by the addition of a single internal velocity degree of
freedom via a bubble. See Figure 2. This is the MINI element of Arnold, Brezzi, and
Fortin [3]. A related element is the quadratic velocity-linear pressure Stokes element or
Taylor-Hood element. By passing to quadratic velocities, not only is the element stable (on
all but some very special mesh topologies), but a higher rate of convergence is achieved.
T.le Taylor-Hood element was -conceived independent of any proof of its stability, and
vcrifying stability is much more difficult than for the MINI element or any of the other
Stokes elements discussed in this section.

( A second (closely related) method of enrichment is to use a finer mesh for velocity
than pressure. For example, although the quadrilateral bilinear velocity-constant pressure
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FIG. 2. An unstable Stokes element (left), stabilized by a bubble degree-of-freedom (right).

element is unstable (giving rise to the famous checkerboard pressure modes), it can be sta-

bilized by using a composite velocity element which is bilinear on each of four quadrilateral

microelements for each quadrilateral pressure element. See Figure 3.

T

U p t P

FIG. 3. An unstable Stokes element (left), stabilized by use of a composite velocity element (right).

Yet another method to stabilize a Stokes element is to enrich a conforming velocity

space to a non-conforming one. This is the idea behind the Crouzeix-Raviart [11 method

shown on the right hand side of Figure 4.

U P u P

FIG. 4. Conforming linear velocity-constant pressure (left) is unstable,

but non-conforming linear velocity-constant pressure (right) is stable.

Practically any Stokes element can be rendered stable by sufficient enrichment of the

velocity space, the only limitation being the cost associated to the extra velocity degrees

of freedom. if the original element afforded similar rates of approximation of velocity and

pressure, the additional degrees of freedom for velocity won't increase the rate of conver-

gence, since the approximation will be limited by the pressure. Thus, for instance, the

quadratic velocity-constant pressure element pictured in ' "gure lb rather disappointingly

converges at the rate of the best approximation by linear velocity and constant pressure.
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For problems in which the a form is not coercive (such as our other three examples),
enrichment of the dual variable space need not improve stability. The difficulty is that as Sh
gets larger, so does Zh, and hence the first condition (8) becomes harder to satisfy. Thus we
are confronted with a trade-off that didn't appear for the Stokes problem. While bubbles,
composite elements, and non-conforming elements have all been used in the development
of elements for elasticity and other problems, their use is more subtle than for the Stokes
problem. For example, Figure 5 shows two stable elements for plane elasticity, the first
due to Johnson and Mercier [17], the second to Arnold, Douglas, and Gupta [4], each of
which utilizes a composite element for the stress.

0 0

S U S U
FIG. 5. The Johnson-Mercier and Arnold-Douglas-Gupta elasticity elements, both of which

are stable. The arrows represent the traction (two components). The triangles represent the
stress tensor (three independent components). For the former element the stresses are piecewise

- - linears with certain continuity across the dotted lines; for the latter piecewise quadratics are used.

Many mixed finite elements utilize the fact that the dual variable in three of our ex-
ample problems is required to have square integrable divergence, but the entire gradient
need not exist. That is, the dual variable is sought in H(div) not in the smaller space H1 .
For a piecewise polynomial function to belong to H(div) it is not necessary that it be con-
tinuous across interelement boundaries (as it would have to be were it to lie in H1 ). Only
the normal component need be continuous-the tangential component is unconstrained.
Thus finite element functions which are discontinous may nevertheless be conforming ap-
proximations of H(div). This allows a certain flexibility which can be exploited in the
construction of elements. Thus for example the Raviart-Thomas elements and the Brezzi-
Douglas-Marini elements, the simplest cases of which are pictured in Figure 6, are of this
sort. The latter element can be thought of as a means to stabilize the continuous linear
flux-constant temperature element, which is unstable. It also uses linear elements for flux
and constant elements for temperature, but the space for fluxes is increased by allowing
functions with only the normal component continuous.

The flexibility afforded by using elements which are discontinuous in some compo-
nents has also been applied to plate bending problems. The variational principle for
the Kirchhoff-Love plate can be set up so that continuity is only required on the nor-
mal bending moment, ntMn, while the tangential and twisting moments can jump. The

( Hellan-Herrmann-Johnson element exploits this flexibility to enable the use of a piecewise
constant approximation to the moment tensor. TPhis element, which is diagrammed in
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S U S U
FIG. 6. The lowest order cases of the Raviart-Thomas and Brezzi-Douglas-Marini

elements for scalar second order elliptic problems. The arrows represent the normal
component of flux. The flux space for the Raviart-Thomas element consists of

vectorfields of the form (a + bx, c + by) on each element. The flux space for the
Brezzi-Douglas-Marini space is the full space of linear vectorfields on each element.

M w
FIG. 7. The Hellan-Herman-Johnson plate bending element. The moment tensor is approximated

by a piecewise constant function. The arrows represent the normal bending moment component on(the edge. The transverse displacement is approximated by a continuous piecewise linear function.

Figure 7, has been shown to be stable in a specially devised, mesh-dependent norm [7].

Most of the examples presented above have been of elements of quite low order. In
fact, it is usually easier to obtain stability with higher order elements. Thus, for example,
the rather natural Stokes element based on continuous velocity elements of degree d and
discontinuous pressure elements of degree d - 1 is unstable for d = 1, 2, or 3, but can
be shown to be stable for d > 4 [21]. (If discontinuous pressure elements are used, then
stable elements are achieved for all degrees d > 1, the case d = 2 being the Taylor-Hood
element.)

The stability constant depends jointly on the bilinear form B (which, for mixed meth-
ods, is built of the two forms a and b), and the trial space Vh (which, for mixed methods,
is built of the two spaces Sh and Wh). Thus far we have discussed ways to construct and
modify the trial space for a given bilinear form in order to obtain stability. It is possible
to modify the bilinear form as well. For example, while the linear velocity-linear pres-
sure Stokes element is not stable with the usual bilinear form, if the discrete solution is
%UtCrmm NcdfOM t)C-systcm

j [CE(Uh): £(v) + divv Ph~ + divUh q - h 2 gradp,, gradq] =jf. V)

the resulting method is stable. This is the simplest example of a Galerkin-Least Squares
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method.* In this case the change in the bilinear form introduces a consistency error (which
however is small enough not to affect the rate of convergence). It is also possible to modify
the bilinear form in a consistent way and still have the linear/linear element stable [16]. In
the last five-years there have been numerous papers presenting extensions and variations
of this procedure to obtain simple, stable mixed methods for a variety of problems.

An alteration of the mixed variational formulation for elasticity of an entirely different
sort was introduced by Arnold and Falk [5]. They derived a variational principle involving
the displacement field and a second-order tensorfield called the pseudostress, from which
the true stress can easily be recovered as a linear combiniation of components. Their
new variational principle is very similar to the Hellinger-Reissner principle but does not
require a symmetry constraint on the tensorfield. This allows one to easily adapt mixed
elements for the scalar second order elliptic problem, such as the Raviart-Thomas or
Brezzi-Douglas-Marini elements described above.
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Abstract. We give a survey of recent results obtained together with K. Eriksson on
adaptive h-methods for the basic linear partial differential equations of elliptic, parabolic
and hyperbolic type. Our adaptive algorithms are based on a posteriori error estimates
leading to reliable methods, and comparison with sharp A priori error estimates is made to
prove efficiency of the procedures.

Introduction.

In this note we give a survey of some recent results on adaptive finite element

methods obtained in collaboration with Kenneth Eriksson, (see [El-3], [EJ1-5]). As

model problems we shall consider the heat equation including the corresponding

stationary Poisson equation representing diffusion-dominated problems, and also linear

convection-dominated convection-diffusion problems. Together, these problems cover

the basic linear partial differential equations of parabolic, elliptic and (first order)

hyperbolic type. In each of these cases our goal is to solve the following problem (A):

Given a norm 11 . 11, a tolerance TOL > 0, and a piecewise polynomial finite element

discretization of a certain type (e.g. piecewise polynomials of a certain given degree),

design an algorithm for constructing a mesh T with (nearly) minimal number of

degrees of freedom, such that

(n I1. II,,-.TTII r nT% -' j IIU*  %ill -/.U,

where u is the exact solution and U is the finite element solution on the mesh T.

Clearly, our problem (A) has two ingredients: First, we want the adaptive algorithm to

be reliable in the sense that the error control (0.1) is guaranteed. Secondly, we want the



algorithm to be efficient in the sense that the constructed mesh is nowhere overly

refined. Note that for definiteness our criterion for efficiency is a minimal number of

degrees of freedom. Of course, in practice depending on the particular implementation

mesh generator, solution techniques et cet., we may accept a certain over-refinement.

Adaptive codes are now entering into applications and adaptivity may be

expected to become a standard feature of finite element software in the future.

Quantitative error control is of obvious interest in applications and efficient techniques

for adaptive local refinement or orientation of the mesh opens fascinating possibilities of

computing accurate solutions to complex problems involving different scales, such as

problems in fluid mechanics with boundary layers and shocks, crack problems in solid

mechanics, semiconductor problems, reaction-diffusion problems et. cet.

Our adaptive algorithms are based on a posteriori error estimates of the form

(0.2) Ilu-U! £(U, h, data),

(
where as indicated the error bound 6 depends on the computed solution U, on the

mesh cize h of the corresponding mesh T and the data of the problem. Here h is a

function giving the local mesh size in space and time. Starting from (0.2) we have the

following adaptive method for error control in the I1 -1-norm to the tolerance TOL: Find

a mesh T, with mesh function h and corresponding approximate solution U, with

minimal number of degrees of freedom such that e(U, h, data) TOL. Since U depends

on h this is a (complex) non-linear minimization problem. To solve this minimization

problem approximately we design an adaptive algorithm usually of the following form:

Given a first coarse mesh TO, construct successively meshes Ti, j = 1,...,J, with

corresponding mesh functions h; and approximate solutions U:, with minimal number of

degrees of freedom such that:

(0.3) £(Uj_, hj, data) < 0 TOL,

until E(Uj,hj, data) _ TOL, which is the stopping criterion. Here 0 is factor (0 - 1)

influencing the total number of steps J required to reach the stopping criterion. Since



Uj is given in (0.3), the minimization problem in hj is easy to solve approximately by

, seeking to eguidistribute the element contributions to the global quantity C. Note that

we consider here adaptive forms of the so called h-method, where the quantity

determined adaptively is the local element size. More generally, it is of interest to

develop methods where the mesh orientation and stretching, and the degree of the

piecewice polynomials are also determined adaptively.

Since our adaptive algorithms are based on a posteriori error estimates, it follows

that the algorithms are reliable in the above sense; if the stopping criterion

E(U,h, data) TOL is satisfied, then by (0.2) we will have Iju-UII _ TOL and the

error will be within the given tolerance. Concerning the efficiency of the adaptive

algorithms more or less precise results may be stated. Ideally, one would like to prove

that the final mesh generated by the algorithm is close to the optimal mesh, which we

take to be the mesh with fewest degrees of freedom such that the approximate solution is

within the given tolerance. In certain cases it is possible to actually prove such a precise

A" result (up to constants of moderate size), while in other cases we obtain weaker results.

In general, to prove efficiency we rely on sharp a priori error estimates, where the error

Iju-UII is estimated by a quantity E(u,h) depending on the exact solution and the

mesh size h. In the elliptic and parabolic case we prove that the a posteriori quantity

£(U,h,data) may be estimated by a constant times the a priori quantity E(u,h), which

proves efficiency in a weak sense, and may be sharpened through various localization

results to prove efficiency in a strict sense for certain problems. Note that by proving

that the a posteriori bounds may be estimated by a constant times the a priori bounds,

it follows in particular that by decreasing the mesh size it is possible to realize the

stopping criberion under some assumption on the nature of the exact solution, which is

not evident from the start.

Summing up so far, our adaptive algorithms are based on (sharp) a posteriori

error estimates leading to reliable methods, and comparison with sharp a Priori error

( estimates is used to prove efficiency in a more or less precise way. The error estimates

are based on a representation of the error in terms of the solution of a certain dual



problem. This e.ror representation is fundamental in our approach to adaptivity since it

gives information on the structure of the global error as composed of contributions from

individual elements, which gives the basis for the design of the adaptive algorithm.

Basically, the error estimates are obtained by using the orthogonality properties of the

Galerkin method and standard finite element interpolation estimates, together with

appropriate stability estimates for the dual problem. In the case of the a posteriori error

estimates the dual problem is a continuous-problem, while for the a priori estimates the

dual problem is discrete. In this framework there is a close analogy between the a priori

and a posteriori error estimates which appears to be fundamental. In both cases the

stability of the dual problem is the critical issue. In general, the stability of the

continuous dual problem connected with the a posteriori estimates is easier to tackle by

analytical tools than that of the discrete dual problem related to the a priori estimates,

and thus in many cases the a posteriori estimate is easier to prove than the a priori

estimate, contrary to a common opionion that a posteriori estimates are more difficult to

(obtain. For more general problems (e.g. nonlinear problems or problems with variable

coefficients) the stability of the continuous dual problem cannot be accurately estimated

by analytical means (in particular, one has to determine approxiniately the size of

certain constants involved) and in these cases one has to build in a computational

estimate of the stability of the dual problem as a part of the adaptive process. For

certain problems and norms, numerical experiments show that this is feasible, while for

more general problems more work is required to obtain reliable and accurate

computational estimates of the stability of the dual problem. We note that this is a

fundamental problem which has to be faced, analytically or computationally, since the

stability of the dual problem reflects the error propagation properties of the given

equation.

For parabolic problems we use the Discontinuous Galerkin method based on a

space-time finite element discretization with basis func;ions continuous i.n space and

discontinuous in time. The time step and the space discretization may vary from one )

time level to the next and it is also possible to use more general space-time meshes with



the time steps being variable also in space. For hyperbolic type problems we use the

Streamline Diffusion method (SD-method for short below) again with space-time finite

elements in the time-dependent case.

We now briefly comment on the difference in our approach to adaptivity as

compared to the pioneering work by Babuska, see e.g. [B], and the related work by Bank

[Bal] and Ewing [Ew]. Firstin the work by Babuska et al the emphasis is on elliptic

problems with error control in the energy norm, while we consider also other norms and

also parabolic and hyperbolic problems. Secondly, Babuska et al seek to construct a

posteriori error bounds which are very precise in the sense that the quotient between the

estimated and the actual global error (the effectivity index) tends to one as the mesh

size tends to zero. For this purpose elaborate a posteriori estimates based on solving

local problems are used. However, in our approach we set the goal lower in this respect,

and we use simpler possibly less precise estimates and accept (depending on the

difficulty of the problem, the chosen norm and the tolerance) effectivity indices in the

" range, say, from 1 to 3. In contrast we are able to attack more general problems and we

are not restricted to only energy norms. A further difference is that we seek to obtain

adaptive algorithms which we can prove to be efficient in a more or less precise way. Let

us note that we should distinguish between the concept of effectivity index and the

efficiency of the adaptive algorithm. Even if the effectivity index is close to one, which

says that we are able to estimate the global error on a given ,nesh very accurately, it is

not clear that the underlying mesh is close to the optimal mesh related to the

corresponding tolerance level; the given mesh may be locally overly refined and there is

no way we can detect this by only looking at the effectivity index.

To sum up, in our approach we do not seek to achieve effectivity indices

necessarily very close to one, but we seek adaptivealgorithms for a genera!iclass of

problems with error control in a variety of norms and we seek to prove that the

algorithms are efficient in the sense that ahost optimal not overly refined meshes are

(" generated. Note that for parabolic problems our adaptive methods seem to be the first to

give reliable and efficient error control in L(L 2 ) i.e. the maximum norm in time and L2



in space. For hyperbolic problems our results appear to give the first adaptive methods

based on a posteriori error estimates.

After our paper [E J3] was completed we discovered that our a posteriori error

estimates in the energy norm (H1 -norm) for the Poisson equation are analogous to those

presented in Abdalass [A] and Verffirth [V] for the Stokes problem. We also learned that

similar a posteriori error estimates for the Poisson equation were considered already 1979

by Bank [Ba2]. These estimates are based on estimating the H-1 -norm of the residual of

the finite element solution in terms of a weighted L2 -norm of the residual over the

element interiors and the jumps of the normal derivatives of the finite element solution

across interelement boundaries (using the orthogonality relation built in the Galerkin

method). In this approach (which is very simple and natural) the residual of the finite

element solution is separately estimated in the interior of the elements and on element

boundaries, which leads to effectivity indices not necessarily very close to one. The

development in the early and mid eighties with mathematical emphasis, however, took a

( different route concentrating on methods with effectivity index close to one. Our intexest

in a posteriori estimates of the indicated form is motivated by their simplicity and the

possibility of handling problems of different nature and different norms. For pioneering

work on adaptive methods with emphasis on engineering aspects, see also [LMZ],

[ODSD].

An outline of the remainder of this notes is as follows: In Section 1 we present

the discretization methods for our model problems of elliptic, parabolic and hyperbolic

type. In Section 2 we present the a priori and a posteriori error estimates and in Section

3 we state the corresponding adaptive algorithms and in Section 4 we discuss their

reliability and efficiency. In Section 5 we indicate the structure of the proofs of the a

posteriori and a-priori -error estimates and finally in Section 6 we present the results of

some numerical experiments.

1. The discretization methods. )
For simplicity we shall restrict our considerations to some standard model



problems of elliptic, parabolic and hyperbolic type, namely, to find u such that

-) f-Au(x)= f in 92,

( u(x) =0 on r,

ut - A u = f  in n x R,+

(1.2) u=0 on r xD +,
u(-, 0) = u0 in 92,

(1.3) {.Vu + au-div(cVu) = f in n2,

* u= g on F,

(1.4) [it + I.Vu + au - div(eVu)=f in O2-IR+,

g on r x

tu(.,0) = uo in

respectively. Here &2 is a bounded polygonal domain in R2 with boundary F,
R (0,o), A is the usual Laplacian , ut = t P = (fil'f 2) is a given velocity field, a

is a given absorption coefficient, c > 0 a given (small) diffusion coefficient, all

coefficients possibly depending on x and t, and the functions f, g and u0 are given

data. We note that when c = 0, then the boundary condition u = g in (1.3) is imposed

only on the inflow part of the boundary r- = {x E F: n(x) fl(x) < 01 where n(x) is

the outward unit normal to r at x E F, and similarly for (1.4).

For the discretization of these problems with respect to the space variable x =

(x1, x2 ), let E be the class of all finite element discretizations (h, T, S) defined as

follows: (i) h is a positive function in CI(N) such that

(1.5a) Vh(x)l _<i, Vx E IT,

( (ii) T = {K} is a triangulation subdomains of n into triangles K of diameter hK

such that



(1.5b) clh2 < f dx, VK E T,I K

and associated wi',h the function h through

(1.5c) c2 hK . h(x) _ h K, Vx E K, VK E T,

where c1 and c2 are given positive constants which together with 1 and 91

characterize E, and (iii) S is the set of all continuous functions on 3 which are linear

in x on each K E T and vanish on Mf1.

As indicated, in the adaptive process we need to construct for a given mesh

function h satisfying (1.5a) a corresponding mesh T satisfying (1.5b,c). In our

implementations we have for this purpose used two mesh generators: one based on

successive subdivision of one triangle into four similar triangles by joining the midpoints

of the sides of the given triangle and introducing "transition triangles" divided into two

subtriangles connceting zones with different mesh size, and another "front generator"

( which constructs a mesh with given local mesh size by adding elements at a "front" )

coinciding initially with the boundary and sweeping the region, see [H].

The stationary elliptic problem (1.1) may now be approximated in the usual way:

Let (h, Th, Sh) E F, and find U E Sh such that

(1.6) (VU, Vv) = (f,v), Vv E Sh,

where (.,.) denotes the usual inner product in [L2 (1)]d, d = 1,2. By introducing the

L2 projection operator Ph: L2 (fn) -4 Sh defined by (Phwv) = (wv), Vv E Sh, and

the discrete Laplacian A h: H(S2) -4 Sh defined by (Ahwv) = - (Vw, Vv), Vv E Sh, we

may write (1.6) equivalently as - Ahuh = Phf, which has a more obvious resemblance

with (1.1).
IT

Let us now turn to the Lime dependent parabolic problem (1.2). FOr a full

discretization of this problem with the Discontinuous Galerkin method we consider

partitions 0 = t0 <t 1 <...< tn <..., of !R+ into subintervals I = (tn1 tn) of length

kt O ti a sa dtiztn (engI k.. n = n - tn-l, and associate with each such time interval a space discretization (h.,



Tn , Sn) E E. For q a nonnegative integer we define V qn= {v:v = tPj,
j=0

Vj E Sn}, and discretize (1.2) as follows: Find U such that for n = 1,2,..., UJO×in. E

Vqn and

(1.7) {(Ut'v) + (VU,Vv)}dt + (Un, 1  (f,v)dt, VV ) V
(1.7)+ =[ln1 vn (fvdV qn~

where [wIn wn+- wn , Wn -4)= li+- w(tn+s), and U0 = U0. With f = 0, (1.7)

is equivalent to the sub-diagonal (q+l, q)-Pad6 scheme of order of accuracy 2q + 1, see

[EJT.

Remark: Note that in the discretization (1.7) the space and time steps may vary in time

and that the space discretization may be variable also in space, whereas the time steps
kn are kept constant in space. Clearly, optimal mesh design requires the time steps to

k be variable also in space. Now, it is easy to extend the method (1.7) to admit time steps

which are variable in space simply by defining

Vqn = {v: v(x,t) = .vi(t)X1 (x)},

where {Xi} is a basis for Sn and the coefficients vi now are pipcewise p, .ynomial of

degree q in t, without continuity requirements, on partitions of In which may vary

with i. The discrete functions may now be discontinuous also inside the "slab"

x In . The Discontinuous Galerkin method again takes the form (1.7) with the

difference that the term ([U]n 11 , vn l) is replaced by a sum over all jumps of U in

s2X[tn-l, tn) and-further the discontinuities of Ut are discarded in the integral

involving Ut . Adaptive methods for the Discontinuous Galerkin method in this

( generality are considered in [EJ4]. N

Finally, we consider the convection diffusion problems (1.3) and (1.4). For the



discretization of these problems we shall as indicated use the SD-method which is a

variant of a standard Galerkin finite element method obtained by two basic

modifications: a "streamline" modification of the test functions (in the stationary case)

from v to v + b(iP. Vv + av) where 6 -, h, and a second modification obtained by

adding an artificial viscosity term with viscosity coefficient proportional to ho (with

3/2 < < 2) and the residual of the finite element solution. The streamline SD-method

is the first general finite element method for (first order) hyperbolic equations which

combines good stability with higher order accuracy. Convergence results are available for

linear scalar convection-diffusion problems, for the incompressible Euler and

Navier-Stokes equations, for scalar conservation laws in several dimensions, and also

(entropy) consistency results for e.g. the compressible Euler and Navier-Stokes

equations (see [JNP], [JSW], [JSH], [S]). With q = 1 the SD-method for (1.3) may be

formulated as follows in the case g = 0 and c > 0: Find U E Sh such that

( (1.10) (#.VU + aU,v + b(fl.Vv + av)) + (VU, Vv) = (fv + 6(8.Vv + av)) Vv E Sh)

where
6c1 max(h - '0)/I 1,

= Z(U) = max(c, C2haj #.VU + aU - f),

where the Ci and a are positive constants with < a < 2. In the computations we

normally choose a close to 2.

For the time dependent problem (1.4) the SD-method reads as follows using the

notation of (1.7) again with q = 1 and assuming that g = 0 and c > 0: Find U such

that for n =1,2,..., U I"XT E V,1 and
n

(1.11) 1 n{(Ut + 9.VU + aU, v + 6(vt+ /3.Vv + av))}dt
(n



+ f (M7U, Vv)dt + ([Un-l], v 1)
In

=fJ (f,v + 6 (vt + #. Vv + av))dt, Vv E Vln,
In

where U= u0 ,

6 = c1 max(- - M/-(A1 , I)i

= i(U) = max(c, Cha(IUt+f+.VU + aU - fj + U-1 in xI)) n,
2 t n

*O VV=(aVa Ov

with the Ci and a as above.

2. A priori and a posteriori error estimates.

In this section we state a priori and a posteriori error estimates for the

discretization methods (1.6)-(1.11). By II we denote the L2 (f )-norm and Du =

-1., D jDu 2] 1 For the stationary elliptic problem (1.1) we have the following a...

priori estimate:

4'Theoreln 2.1. Let f E L2(fl) and let u and U be the solutions of (1.1) and (1.6),

respectively. Then for m = 1 and 2 there exists a constant C depending only on the

6nstants A. and C2 in (1.5), such that

where for m = 2 we assume that /u is sufficiently small and .0 is convex.

Remark 2.1. Note the way in which the local mesh size h(x) enters in these error

estimates showing that large second derivatives of u may be compensated for by a

( (locally) small mesh size so as to control the quantity IlhmD 2uII, m=1,2, bounding the

error. This indicates the possibilityof adaptively choosing the mesh size to control the



error if D2 u may be computationally estimated, d, idea which was explored in [EJ1].

In this note, however, we will follow a related but different adaptive strategy directly

(. based on a posteriori error -estimates. .

Remark 2.2: Note further that the estimates (2.1a,b) are optimal in the sense that there

exists a constant c such that "for most u" (e.g. if Dau, I ol = 2, is roughly constant

on each element),

inf IID2-m(u-v) > c JIhmD2ui[, m = 1,2,

vES 11

which indicates that error control based on (2.1) should be efficient. *

The error estimate (2.1) with m = 1 is clab.1cal, whereas with m = 2 the

estimate in the present generality can be found in [E2]. For quasi-uniform partitions

((corresponding to taking h constant) the case m = 2 is weil known. Let us further

remark that (2.1) may also be derived for a (convex or nonconvex) domain n with

smooth boundary, in the case m = 2 with the constant C depending on fl.

To state the a posteriori estimate for the stationary elliptic problem (1.1)

U'nderlying the adaptive algorithm we need some notation. With each side r E OK n fl

of a triangle K E Th we associate a vector nr of length one normal to r and define

for v E Sh

[rav = liIn. (Vv(x+snr) - Vv(x-snr)).n r , x E r,

that is, [ -- is the jump across 7 in the normal component of Vv. We define for v E
7.

Sh the piecewise constant quantity D2v byh h
D v= max I[T-I/hK on K XETh,

7- E DIM r



where as indicated only the sides r in the interior of n occur, which may be viewed as

a discrete counterpart of I D2 vl .

We may then state the following a posteriori error estimates for the stationary..

elliptic problem (1.1) given in [EJ3]:

Theorem 2.2. There are constants am and 1im only depending on the constants c

and c2 such that iff E L2 (fl) and u and U are the solutions of (1.1) and (1.4),

respectively, then for m = 1,2,

(2.2) ID2- m (u-U)I, amllh mfIj + PmllhmD2Ui,

where in the case m = 2, we assume that At is sufficiently small and Q2 is convex.

Remark 2.4. Note that without further analysis the amount of information in the a

posteriori estimate (2.2) is not obvious. Clearly, if we compute U using (1.6), then we

may bound the error using (2.2) by evaluating the right hand sides of these estimates. If

these quantities turn out to be sufficiently small, then we may be satisfied and quit.

However, without further analysis it is conceivable that the right hand sides of (2.2)

would always be large and then these estimates would be useless. In fact, a posteriori

error estimates of the form (2.2) may be derived also for unstable methods and in such

cases the right hand side quantities could be large regardless of the mesh size. In our case

we shall prove that in fact (2.2) is sharp, and thus may be useful in practice, by

comparson with the optimal a priori estimates (2.1). *

Remark 2.5. If f E H2(Q2), then the f-terms in (2.2) or (2.3) may be replaced by

a3 1ih4-mD2fll. *

( Let us next state optimal a priori estimates for the parabolic problem (1.2) given

in [EJ3]. For simplicity we assume that fl is convex. The estimates may be extended to



general domains with smooth boundary with the constants C depending on n.

Theorem 2.3. Let u be the solution of (1.2) and U that of (1.7), suppose tt is small

enough and assume that for each n one of the following two assumptions hold:

(2.4a) Sn C Sn-i'

(2.4b) , i n < 7kn,

where R n = max hn(x) and y is sufficiently small and that for all n, kn < C kn+I.
xEN

Then there exist constants C only depending on c1 and c2 (if n is convex) such

that for q = 0,1, and N = 1,2,...,

(2.5a) Iiu-U111  < CLN max E
N 1<n<N q n (u ) '

andfor q=1, N=1,2 ......

(2.5b) Hiu(tN) - UN[1 _ CLN max E2n(U),
1 < n<N

tNwhere LN F(-l + 1)2

Eqn(U) = mi n kJIlu(J)j n + Ilh2D2 ujI1 , q = 0,1,2,
qu)=j~q+1 n n

with u1) = ut , u(2) = u u(3) = Au and Ijw[in = max In w(t)II.

t t tt, t ttn t E ln

Remark 2.6. Note that (2.5) states that the Discontinuous Galerkin method (1.5) is of

order q+1 globally in time and of order 2q+1 at the discrete time levels tn for q =

0,1. Further, the estimates (2.5) are optimal in the sense that for some positive constant



6c

(2.6) inf Iiu-v1i n C Eqn(u ) ,  q = 0,1,2,

qn

if here, in the definition of E (u), we put u( 3) = u and restrict the variation of

qn t -ttt

u 3 ) and Dou for I = 2 as in Remark 2.2. Note that for the "super approxi-

mation" result (2.5b) it is relevant to compare with approximation in V2n' U

Remark 2.7. With quasi-uniform space-meshes with hn(X) , En we expect to have

in k for q = 0 and E12 << k if q = 1, since the Discontinuous Galerkin method
nn n n

is of second order in space and of order 2q+1 in time, q = 0,1. Thus, in particular for

q = 1 the condition (2.4b) does not appear to be restrictive and in fact allows a

considerable variation of hn(x) . In certain extreme situaitions, however, e.g. with

initial data u0 highly concentrated in space, (2.4b) may impose a restriction on the

mesh. It is possible that (2.4b) may be weakened to a condition of the form i2 < 7Kn

where Kn t -tin' and Sm =Sn for m=n,n+l,...,n*

We now state a posteriori estimates for the parabolic problem (1.2) (see [EJ3].

Again, we assume that fR is convex, but generalizations to smooth non-convex domains

are possible (cf. Remark 2.10).

Theorem 2.4. Let u be the solution of (1.2) and U that of (1.5), suppose fQ is convex

and /i sufficiently small. Then for N > 1, we have for q = 0

(2.7a) Iu(tN) - UNII max n(U),
~1 < n<N

and for q = 1

(2.7b) Iu(tN) - UNI < max £2n(U),
1 <n<N



where

on(U) = ClllhnfIlIn + C2 f Ilf lldt + C3IlhnDnU nIl + U 4 1[Un ll
(I I+ n5!h2[U n ]k11n*,

+ 251 2 /k

62n(U) = C61h2fllin + C7 k2 { Ilfttlldt + CsIlhnDnUIIn

+ i( lk+C11 2 /k
+ min(0 911[Un 11 1), C10knIlAnPn[Un11 ll)+ C n 11hn[Uni]/knl*,

where D2  D2  and a star indicates that the corresponding term is present only if

Sn ; Sn 1. Further the C1 are constants given by

C1 = ca2L, C2 = L+2 C3 = fl2 (L+2), C4 = L+1,

C5 = a 2 (L+exp(-1)), C6 = a2 (L+2), C7 = 73 (71 L + y0 + 1)

( C8 = 2 2 (L+I), C9 = (4, C1 0 = t2L + y1 , C11 = C5,

L = max LN,
N

where a2 and 92 are certain constants depending on c1 and c2 related to

approximation by functions in Sh , and the -i are absolute constants related to

one-dimensional approximation by linear functions (see Sectio "below).

Remark 2.8. The term C l h2 f lI n in 8 on and £2n may be replaced by

Cllih4D2 fllin, the term 02 f Ilflldt in £,on by C2k n f iftltdt and C7 nk nllfttlidt in
n1 I nI n

8 2n by 7k 3 Afttlldt with modified constants Oi' N
A n

Remark 2.9. 2he comments of Remark 2.4 are also relevant for the a posteriori estimate

(2.7). By comparison with the optimal a priori estimate (2.5) we can prove that (2.7) is



sharp and thus may be used as a basis for an efficient adaptive algorithm. *

Remark 2.10. In the general case with the boundary of fl smooth, (some of) the

constants Ci should be replaced by constants C. = CC., where Cs is a stability

constant depending on 0 defined by

Cs  sup D .

vEH'(Q)lH 2 (fQ)

v0

The approximation constants a12 and 92 (depending on c1 and c2 ) and the

absolute constants -i entering in the Ci, may be estimated once and for all (values of

these constants used in our numerical computations are given in Section 9 below), while

the stability constant Cs in general depends on Q2. It is possible that a relevant value
of C5 may be found by computing the quotient ID1 vI/IAhV for some properly

chosen v E Sh . The a. posteriori estimates may be generalized also to problems with

variable coefficients or nonlinear problems (see [EJ4]). In this case the Ci should be

replaced by Ci = Cs(u)Ci, where Cs(u) is a "stability constant" depending on 2 and

the coefficients, and also "mildly" on u. It is likely that such constants may be

estimated through the adaptive procedure, cf [Eli, [EJ2,4]. N

Remark 2.11. One can prove direct analogues of Theorem 2.1-4 replacing the

L2 (r)-norm by the Lp (()-norm, 1<p<o, (see [El]). *

Finally, we whall state some apriori, and a Dosteriori error estimates for the

SD-method for the convection-d ffusion problems (1.3) and (1.4). We start with an a

priori error estimate from [JNPJ for the stationary problem (1.3), for simplicity with a

bounded below by a positive constant. Further, for notational simplicity we consider the

-- convection dominated case with c < h. The estimate can easily be extended to a

general c to give esti.mates analogous to (2.2) in the case c = 1.



Theorem 2.5. Suppose there are positive constants t; such that n < a(x) < /1,

x E f, and suppose the velocity fP is smooth. If the exact solution u of (1.3) belongs

-to Wl'°(f2), then there exists a constant C such that if e < h, then

I I6fl.V(u-U))Il + II V(u-U)i+ Ilu-UiI _ Cih3/2D2ui.

We now state an a posteriori error estimate for the SD-method (1.10) for the

sta,':nary problem (1.3) from [EJ4]. For simplicity we shall compare the computed

solution U with the solution fi of a perturbed continuous convection-diffusion problem

obtained by replacing c by (U) in (1.3). It is also possible in model cases to estimate

the perturbation error Ilu-fil[ in terms of i(U) - e, U and f, see [EJ5]. In general, we

expect Ilu-fi[I to be dominated by Clif-UI, so that control of ilfi-Uli suffices. In the

ade'ptive algorithm for (1.10) to be presented below, we also have the option of including

the requirement = c, corresponding to resolution of all details of the exact solution,

(in which casrp on the final mesh fi = u, see Section 3 below. For simplicity we assume

that the coefficients a and P6 are constant.

T 'iorem 2.6. There is a constant C such that

(2.8) 1if - U11 Cilmin(1, Z-1 h2 )R(U)I + max j2

where

R(U) = IflVU + aU - fI + Idivh(VU)1,

Idiv h(VU) I max max[ Vn-j/hk on KET.
rE 0KlflQ T T

We also-state the following analogue of Theorem 2.6 for the SD-method (Ll1) for

the time dependent problem (1.4), again assuming for simplicity that a and fi are )

constant.



Theorem2.7. There is a constant C such that

K' (2.9) Cli-UnL(Q) Cmn 1 h2 )R(U)IL2(Q) + L

where Q = x2 I, with I = (0,T) a given time-interval, Q_ = (Px I)u(2 x{0}),

R(U)= IUt + .VU + a - fI + Idivh ('VU)I + [] ]I on S1X In .

Remark 2.12. Note that (2.8) has essentially the form 11I-UJ < C!Imin(R(U),1)I which

should be compared with the a posteriori estimate for the standard Galerkin method for

(1.3) corresponding to choosing 6= 0 and c = c in (1.10): Iju - UII < C IIR(U)II. In a

situation with boundary or internal layers JIR(U)I -4 o as h1 -4 0 and then adaptive

error control is not possible for the standard Galerkin method, cf. Section 4 below.

3. Adaptive algorithms

In this section we present the adaptive algorithms based on the a-posteriori error

estimates stated above, considering first the elliptic problem (1.1). Starting from the a

posteriori erior estimate (2.2) we have the following algorithm for control of

JID 2-m(u-U)Ilm = 1,2: Given an initial triangulation TO, determine successively

triangulations T. with N. elements and mesh functions h. and corresponding

approximate solutions U,, j = 1,...,J, such that hj is maximal under the condition

.nlllhmf.lL 2(K) 1 Jm j-lL 2  
< T/ 1 h K e T

where J is the smallest integer such that

(3.2) %Ijhjfi + fmIjhmD 2  UJ < TOL.
m 'J hJ-1 J

(
"1

Further, 0 is a parameter (here 0 - j), through which we may monitor the total

number of steps J required to achieve (3.2). Normally, we may expect to have J - 2 -



5. Notice that (3.1)-seeks to equidistribute the contribution form each element to the

r global error bound am [[h2f + D 2

For the parabolic problem the a posteriori error estimate has the form

(3.3) I1uN-UN[[ < max En(U, hn, kn, 0,
nN

where En is a quantity related to time step n. The adaptive algorithm based on (3.3)

for control of max i[u n - Un1 has the following form: For n = 1,2,...,N, construct a
n<N

mesh Sn with N n elements and mesh function h n, a time step k n and

corresponding approximate solutions Un on fl x In such that

6n(Un, hn, kn, f) = TOL,

and N n/k n is (nearly) minimal. To solve the minimization problem we again seek 6o

( equidistribute the contributions from the elements in the space-time discretization of Q

X I . For a precise statement of the adaptive algorithm in this case, see Example 6.2

below.

For the stationary hyperbolic problem (1.3) we may design two adaptive

algorithms: (i) one algorithm based on (2.8) and (ii) one algorithm based on (2.8)

together with the additional requirement that the mesh is refined until Z = c. In the

case (i) the adaptive algorithm is obtained by replacing (3.1) by

(3.4a) Chj min(l, ij_lh?_I)R(Uj_I) < OOL on K c T_

(3.4b) Chja/ 2 R(U H)1/2 < TOL if K n r .

In the case (ii) we also add the requirement that



(3.4c) WhlR(Ujol) < C.

The stopping criterions are obvious. With proper normalization it appears that = E.

corresponds to resolving all scales of the continuous solution, see Section 4 below.

Extensions to the time dependent hyperbolic problem is obtained by replacing (2

by Q x I and also here we may add the requirement i = c.

Remark 3.1. For error control in the maximum norm (Loo (f)-norm) e.g. for the Poisson

equation, the adaptive algorithm has the form (see [E2]).

C(Hh~f~fL,?() + Ihj UjI (K)) = TOL on g E T._

4. Reliability and efficiency.

We recall that our adaptive algorithms are based on a posteriori error estimates

of the form Iju-UII _ E(U, h, data) and that the stopping criterion is

'(U. h, data) _ TOL, which guarantees that if the stopping criterion is satisfied, then

the error will be within the given tolerance and thus the adaptive algorithm is reliable.

Next, we consider the efficiency of our adaptive algorithms. To prove the

efficiency in a precise way we need to prove that the final mesh produced by the

adaptive algorithm is close to the optimal mesh, which is the mesh with fewest degrees

of freedom such that the corresponding approximate solution is within the tolerance.

This is possible to show e.g. for the Poisson equation with error control in the maximum

norm by using localization techniques to prove that (see [E2j) on a mesh produced by

the adaptive algorithm, we have for x E (,

max [h2 (y)D 2 u(y) I > cTOL
ly-xJ<Ch

This result proves essentially that for all x E 2 the local interpolation error is bounded

below by a constant times the tolerance and thus that the mesh is now where overly



refined. In L2 -norms efficiency in this precise sense is more difficult to prove and in such

cases it may be of interest to prove efficiency in a weaker sense. We present a simple, ( may_ prv

result of this type for the Poisson equation, stating that the a posteriori error bounds

may be estimatated by (sharp) a priori error bounds (see [EJ3]).

Theorem 4.1. Under the assumptions of Theorem 2.1 there is a constant C such that

for m = 1,2,

mjlhmfll + fimjIhmD 2U11 CIlhmD 2u ll.

From this result it follows by Remark 2.2 that in general the global L2 or H1-

interpolation error on a mesh produced by the adaptive algorithm is not essentially

below the given tolerance, which indicates efficiency in a certain sense (but does not

necessarily exclude local over-refinement). A somewhat different indication on efficiency

also follows from Theorem 4.1, namely that an optimal mesh for which CIIhmD 2 ull =)

TOL, will (up to a constant) be accepted by the stopping criterion of the adaptive

algorithm. In particular it follows that it is possible to satisfy the stopping criterion for

any tolerance e.g. if JID2uII is finite.

For the parabolic problem (1.2) one can prove an efficiency result localized in

time corresponding to Theorem 4.1 stating that for almost all time steps n the

interpolation error Eon (q = 0) or E2 n (q = 1) is not essentially below the given

tolerance on meshes generated by the adaptive algorithm, see [EJ3].

Also for the hyperbolic model problems (1.3) and (1.4) certain results indicating

efficiency of our adaptive algorithms are available. Let dS give an outline of these results

for the SD-method (1.10) for the stationary problem (1.3). Typically, the exact solution

u of (1.3) is piecewise smooth with a boundary layer of width 0(c) at the outflow

boundary r+ - P\_ and internal layers of width O(VJ) along streamlines of the

velocity field /3 e.g. if the inflow boundary data is discontinuous In the typical case the

continuous solution thus has features on the three different scales 0(1), 0( c) and 0(c) in



smooth regions, internal layers and outflow layers, respectively. Let us now first consider

- . the adaptive algorithm (3.3) for L2 -norm control based on the a posteriori bound (2.8).

In this case theoretical and computational results indicate that the algorithm will

produce a mesh with mesh size of order O(TOL 2 ) at the outflow boundary,

O(TOL 8 / 3) at an internal layer, and of order O(TOL) in regions where the exact

solution is smooth. This follows from localization results showing that the width of the

numerical outflow layer is O(h) and the width of the internal numerical layer is

0(h3/ 4), (see [JNP], [JSW]) and the fact that the integrand in (2.8) will be of order

0(1) in the layers, and by Theorem 2.5 of order O(h) in regions where the exact

solution is smooth. Altogether, these results indicate that the algorithm for L2 -norm

control will produce a mesh with correct mesh size close to layers and possibly slight

over-refinement in smooth regions, since there the a priori error estimate indicates

O(h 3 / 2 ) accuracy, while the a posteriori estimate only gives O(h). Notice in particular

that the algorithm is able to handle a problem with both boundary and interior layers

and smooth parts with a balanced attention to a.l features. Depending on the tolerance

level chosen and c, the algorithm may resolve internal layers (if TOL < 0(C3/16)) and

also outflow layers (if TOL < 0(c1/2)).

Next, we add an indir -ion to refine if > c. In an outflow layer we will have

= 0(h) if oe = 2, and thus i = c will require h = 0(c) which corresponds to

rc.olution of the outflow layer of width 0(c). In an internal layer, we will have i =

0(113/2) if a = 2, and thus Z = c will require h = 0(c2 / 3 ), which again corresponds to

resolution of the internal layer of width 0(91/2) since the width of the numerical layer

is 0(h3 / 4 ). Of course, the stated results are qualitative in nature and are only valid up

to constants, but indicate that with proper normalization the requirement C = C

Imposes resoiion ofl all scales of the continuous solution.

i( -5. The structure of the proofs of the a priori and a posteriori error estimates



In this section we briefly outline the structure of the proofs of our a Driori and a

posteriori error estimates. We start from a continuous problem with the following

variational formulation: Find u c V such that

(5.1) B(u,v) =L(v) VveV,

where B(..) is a continous bilinear form on V x V, L is a continuous linear form on V

and V is a Hilbert space (e.g. H (fl) in the case of (1.1) and (1.3)). Next, we consider

a corresponding discrete problem: Given a finite element space Vh C V find V E Vh

such that

(5.2) B(U,v) = L(v) Vv - Vh .

To prove an a posteriori error estimate in a norm Ij. related to the scalar product

(-, (.,.), let Vo E V be the solution of the continuous dual problem: Find Vo E V such that

(5.3) B(w,V) = (w,u-U) Vw E V,

a problem which we assume to be uniquely solvable. Choosing now w = u - U in (5.3)

we have using (5.1)

Hu - U 2= B(u- U,y) = B(u,p) - B(U,V) = L(V) - B(U,so),

which gives the following error representation formula using (5.2):

(5.4) Iu - U12 - L(s- )- B(U,V- ),

(j where E Vh is an interpolant of Vo. The idea is now to establish a stability result for

the dual problem (5.3) of the form



(5.5) II (iii I- CHlu - U11,

where the norm 11IIj is as strong as possible, and then estimate V - in a weighted

norm (as strong as possible), with weight depending on (a negative power of) the mesh

size h, in terms of CIII V1 Ij . Inserting this estimate into (5.4) and dividing by Ilu - UI

gives an a posteriori error estimate of.the form

[ju - UII _ C(U,h,L).

where E(U,h,L) depends on U, the mesh size h and the data L. Clearly, the stability

estimate (5.5) for the continuous dual problem (5.3) is the critical ingredient; in

particular we have to find, analytically or computationally, a reasonable approximation

of the best constant in (5.5).

The a priori error estimate is obtained by introducing the following discrete dual

problem: Find 41 E Vh such that

B(w,4) = (w, 0 - U),

where V E Vh is an interpolant of u. Choosing here w -U - U E Vh we get using

(5.1) and (5.2)

(5.6) II _ U112 = B(O -U, )=B( -u,1),

from which we obtain an estimate for JJU - U11 using a (strong) stability estimate for 41

again of the form (5.5) (but with a different norm 11I III) and standard interpolation

error estimates for U - u.

Summing up, the proofs of the a posteriori and a Driori error estimates are based

( on error representation formulas of the form (5.4) and (5.6) together with strong

stability estimates for the associated continuous and discrete dual problems, and



standard interpolation theory is used to estimate p - and u - I, respectively. The

( right hand side of (5.4) is clearly related to the residual of the discrete solution U, while

the right hand side of (5.6) may be viewed as a truncation error. For the concrete

implementation of the above approach, we refer to [El-J], [EJ1-5], [J1-2].

6. Numerical results

In this section we present the results of some numerical - '-periments . Here each

mesh Tj is obtained from a previous mesh Tj_1 , starting with; gr n coarse mesh TO)

by either local refinement dividing certain triangles (fathers) "Ito four similar triangles

(sons) by connecting the midpoints of the sides, or local unrefinement replacing a group

of four sons by their common father. In particular, the minimal mesh size of the mesh T

is half of that of TJ_.

Example 6.1 We consider the Poisson equation (1.1) on the square (-1,1)2 with f = 0

and exact solution u(xlx 2 ) = arctan (x2 /(x1 + 1)) with nonzero boundary conditions

(with a discontinuity at (-1,0). In Fig. 6.1 we give the final mesh produced by (3.1) in the

case m = 2 choosing a2 = 0.15, fl2= 0.3 and TOL= 0.01, together with the

estimated and actual L2 -error on the successive meshes.

Examnle 6.2 We consider the following adaptive algorithm for the Discontinuous

Galerkin method (1.7) for the parabolic problem (1.2) based on the a posteriori' error

estimate (2.7): For n = 1.2,...,N, given an initial triangulation Tn,0 and an initial

time step kn,0, determine successively triangulations Tn, with Nn j elements and

mesh functions hnjs time steps kn~j and corresponding approximate solutions Unj

defined on R -, In, j = 1,...,J, such that with hn,j and kn j maximal

G ,,h 2 .,9 D2

6i; 1 1nn,j1lL 2 (K) + 8 h,j n,j-1 Un,j-111L 2 (K)nj nj

+ C,,Ilh 2  jU*]/kn OT OL K T -tn,j[Un,j/, 1'1L 2(K) =2 1FT V K E Tn,j_ 1 ,

3 n J-l2
kn,j(C7I1fttlInj + min(C10IIAn.; -P- -,[-1Un,j_1]n_/k,j..j- ,

0 funj, - ,j--- if -q = 1,



kn,j(C 2 1fllIn,j +C4 11[Un j_1]n-_l/kn,j-1I) =T2 if q = 0,

. where C2 = 3, C6 = 0.15, C7 = 1/36, C8 = 0.3, C9 = 2, C10 = 1/6 and C = 0.2.

We choose the initial data u0 to be an "approximate deltafunction" at x = 0:

u10 = 250 exp(-Ix 2/250), and n2 = (0,1)2. We give in Fig. 6.2 the sequence of time

steps, the number of elements in the triangulation on each timeinterval, and the
L2 ( l)-error U(tn) - Un1, n = 1,2,..., in the case q = 1, together with the space mesh

at time step 5. We notice that the actual error is approximately constant in time and

slightly below the given tolerance.

Example 6.3 We now give some results-for the adaptive algorithms for the streamline

diffusion method (1.10) for the stationary hyperbolic problem (1.3) based on (i) (3.4a,b)

and (ii) (3.4a,b) together with the additionalrefinement criterion i = c corresponding

to (3.4c). We consider a problem with both internal layer and outflow layer, and with

n = (0,1) 2 , f = 0, =(2,1), a = 0, u(0, x2= 1 for 0<x 2 1,u(xll ) = 1 for
0<x 1 <1 and u(Xlx 2 )=0 if x1 =1 or x2 =O.InFig. 6.3- 6.5 we give some

( results with the algorithms (i) and (ii) and varying c and. TOL. The constants C in

(1.10) were chosen as follows C1 = 0.5, C2 = 0.7. Note that the width of the layer

refinement of mesh T. is related to the width of the numerical layer of the approximate

solution U 1 on mesh Tj_1. This is the reason why the width of the refinement of T

appears to be too large as compared to the width of the numerical layer of the solution

U.. Note also that, for simplicity, the L2-error is computed by comparison with the

exact solution corresponding to c = 0, which means that the given L2-error is not

precise in the case of refined meshes and relatively large c.

(
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A POSTERIORI ERROR ESTIMATES FOft THt"STOKES

EQUATi',NS: A COMPAISON

RANDOLPH E. BANK* AND BRUNO D. WELFERTV

Abstract. Several a poscriori error estimates for the Stokes equations have been derived by
several authors [11] [8]. In this paper we compare some estimates based on the solution of local
Stokes systems with estimates based on the residuals of the discretized finite element equations.
Their performance as local indicators as well as global estimates is investigated.

Key words. Mixed finite element methods, Stokes equations, a posteriori error estimates, mesh
adaptation.

1. Introduction. When numerically solving a set of partial differential equa-
tions through a finite element strategy associated with a weak formulation, one usually
faces the problem of increasing the accuracy of the solution without adding unneces-
sary degrees of freedom in non critical parts of the computational domain. In order to
identify these regions indicators were created, which allow their automatic determina-
tion by computing some function of the characteristic features of the solution, such as
indicators based on the gradient of the Mach number in Computational Fluid Dynam-
ics [4] [10], indicators derived from a priori error estimates, or indicators involving
residuals of the discretized equations [3],[1].

More recently the trend has been to derive a posteriori error estimates based on
more mathematical criteria, by solving small local problems resembling the original

- - global one, but involving higher order finite elements [5], [6], [11], [7].
In this paper we compare a few of these estimates obtained for the Stokes problem.

The finite element scheme used is the classical mini-element formulation, which is
recalled in section 2. Three estimates based on the resolution of a local Stokes problem
alc ig with one based only on residuals are presented in section 3. In section 4 a few
comparison inequalities are stated, and section 5 examines their numerical behavior
on test problems for which an exact solution is known, and on typical examples of
CFD as well.

2. The mini-element discretization of the Stokes equations. We consider
the classical Stokes problem: Find u (velocity field, 2 components) E (70'(0))2 (the
usual Sobolev space) and p (pressure field) E £2(f2) (the usual Lebesgue space) such
that

-vAu+Vp = f in n

(1) V.u = 0 in Q
-,t = g on 00
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in a bounded domain 12 C 72 (v is a viscosity parameter).
A weak formulation of equations (1) can be derived using integration by parts,

and can be shown to satisfy an LBB condition, thus providing a unique solution to
the resulting system [8] (up to an arbitrary additive constant for the pressure).

Let T denote a triangulation of the domain fP, such that any two triangles in
.T share at most a vertex or an edge. Let h, be the diameter of a triangle r E T
and h = max hr. E is the set of interior edges. For e C E, h, denotes the length

rET
of e. We suppose also that the triangulation T satisfies a minimal angle condition,
i.e. the smallest angle in triangle T E T is bounded away from zero by some constant
independent of, I. This implies in particular that Cjhr < h, < C2hr for e E Or.
Furthermore, for P = e, E, or some subset of E, we define the inner product

<u, v >r= uvds =Zf uvds
Jr eEr e

Let C' be the space of continuous functions over T. Let Oi = Oi(r), i = 1,3 be
the barycentric coordinates (linear nodal basis functions) in the triangle -. Then we
introduce the spaces

(2) WT = ?(T=) {U, ul E '((r),-r E T}
rET

(3) = r IT span{,Oi(r), 1 < i < 3, r E T}
rET rET

(4) X = K, = - span{1i(r)¢(r), 1 < i < i _< 3,r ET)
rET rET

(5) B = 11 Br = J spanji (_)2(r)3(r),rET}
rET rET

(6) x = (r- n C n C 0 @B)2

(7) y = Cn n co

and set Q, = £DK, for r E T and Q = l'rJ Q7. £ is the space of piecewise linear
functions and Q the space of piecewise quadratic functions on T. The elements of B
are bubble functions which vanish on all edges of the triangulation.

The mini-element discretization [2] of the weak equations is then given by:

Find (uh,ph) E Xg x Y such that for all (v,q) E Xo x Y:

( a(Uh,-v) + b(V,ph) = (f,v)(8) b(Uh, q) = 0

This formulation also satisfies an inf-sup condition, which implies the unique
-r,olvability of the system (8).

The decomposition uh = Uh, + Uh,b, with UhI E (C n C"0) and Uh.b E 32, is
unique. In fact, Uhj is usuaiiy a better approximation to u than Uh itself (see [11]) and
is therefore used in most a posteriori estimates using the mini-element formulation,
through the residuals r and s defined as

(9) S = Uh,1



Likewise we define the -error terms e U - ,1 (instead of u - u,,) and c p - ph.
We introduce the (nonsymmetric) bilinear form

D((i, p), (v, q)) = v(Vu, Vv) - (p, V - ) + (q, V. -u) + ~ 6~(Vp, Vq),.
11 '~rET 30 0'

and the semi-norm Ni, i = 1, 2,3, defined by

N2(U,)2 = VU112 + h 6I

N(p)vJJVu~JJ + Z 6Oo1'jPpH

Here a, = (V,06(T), V~1b(r)), (17-1 represents the area of the triangle 7-) and
I'd

4'b(r) = 01(7)0b2(r)40a(r) in triangle - (bubble function). a,. is of order 0(hr-
2 ) in

the sense that there exist two positive constants Ca and C4 depending on the minimal
angle in the triangulation such that

C3 h2 0! < 1 C4 h2

Note that on (IC a) B) x (K* 0 B) x K, N., 4 = 1, 2, 3, define equivalent norms, i.e.

/3N2(u, P) 5N1 (u, P) :5N(u, P) :5 2N2(u, P) (u,p) E(KeOB) X (KeB)X-K

for some positive constants 61 and 82.

3. Estimates for the Stokes problem. In this section we introduce three
different estimates/indicators for -the problem presented in section 2. Two of them
are based on some norm Ni of the solution of small local Stokes (or modified Stokes)
systems, and the remaining one simply uses the residuals of the discretized equations;

uh denotes the jump of allhj across, an edge e E arfn o:
. I [81 an estimate i~l was derived from an error analysis performed on a

Petrov-Galerkin formulation of the Stokes equations. Errors in both velocity
and pressure components were approximated by elements in K (quadratic
bump functions), so that the following 9 x 9 (modified) Stokes system was
solved in each triangle: in triangle r find (e',, 4') E X, X K, x IC, such that:

(qV), _ + (V4Vq7 _

(,V-e',.)r + (s, q), + I (r, Vq) 7

for -all 'u, q) E KI'll, X Kr
Then q_ 2 Ni(e' , c4), i =1, 2 or 3, and we define

77 - 2,.7', = Ni (el, C'
rEr



Remark the term (Ve'r, Vq)r is a stabilization term. Indeed, had we not
introduced this term (and hence the corresponding term (r, Vq)r in the right-
hand side),. the resulting 9 x 9 system would then have been possibly singular
(i.e. not satisfying a local LBB condition), in particular for boundary tri-
angles, where the number of degrees of freedom in the pressure error would
then be too large compared to the number of degrees of freedom for the
non-Dirichlet velocity unknowns. However, for interior triangles, an estimate
without the stabilization terms can be shown to be well defined, and is equiv-
alent to ql, 7.

o Alternatively, R. Verfiirth analyzed an error estimate based on the solution
of an 11 by 11 Stokes system in each triangle [1l]: in triangle r find (e", C' E
(N' @ B) x (K, E B7) x X, such that:

v, c e, Vv), - -d v ), (r, v), + -< On - >1 9n

(q,v. "), = (s, q),

for all (v, q) E (N, @ Br) x (Kc, Br) x K,.
Then put q2,- Ni(e",ec), i = 1,2 or 3, and define

2 - 1:72,> = N,(e", ")
rET

Since both velocity components of the solution of the previous system decom-
poses uniquely onto K, @ B, as el = ey,q + erlb, one may compute for the

estimate q'2 Ni (ellc") and set

T(i)2 ,,(i)2

12 17 "2,-

vET

* Finally, we define the a posteriori error estimate q13 in triangle r by computing

2,=In- 1-j + VIISI12 +V h ~.

in all triangles and setting i7 = 173. A slightly different form of this
rET

estimate was presented in [11].

In the next section we compare these estimates with each other and with the
exact discretization error, locally as well as globally.

4. Comparison of the estimates. In this section we state local and global
comparison results between the three estimates introduced in section 3. We will use
the following inequalities, for v E C:

(10) IIV <,II, < ch?1 IIVVll o v
(11) I1911o c3h.-11y <_ c3h /2 IlVvll,
(12) IIV,,ll, _< c4h; ,-' _<vj, 36o0o,kll/'11vll,-

4}



LEMMA 4.1. There exist a cdnslant C depending on the minimal angle in the
triangulation only such that

D(~e' , c, (, q)) _< 'C q3,, N, (, q)

for all (v, q) E Kr X K x K.

Proof. Using the definition of the error estimate (e', ') and inequalities (10), (11)
and (12) we have

D((e,'), (v, q)) (r,v),+V< [Oun. 1 [,,A >Ornt +(s, q) + (r, Vq),7 n I[)A>'n+s ) 3600a~v

1jr 11°',,1 vIIl III ,! .jj ,jj , ,.,rj, JIV qll,-L af-'- J, II j"" 36-- xT v

2 f u, II o II 4
11rll~ lr lr lal,+ V L " -C/ Ou j .l I V ,l

+llsll, Ilql, + C4 I1 11,11, Ilq+l,

_< Ifll + - hL +,lsl,2eE~rlfl

By applying this lemma to the quadratic bump functions (v, q) = (e", c') we then

get a local comparison inequality between the estimates 711,, and 173,,, namely:

rvimlEm 4.2. In any triangle r.E T we have

771,r < C q3,r

for some constant C depending on the minimal angle in the triangulation.

Proof. A direct application of lemma 4.1 in triangle 7- gives

2 ci r# 2Ii #i~~ + 2 c3 41  [t i±i

fN(e, ''< N2 (e',CI)2 D((', c'), (e,,e')) _5 C N, (e' , c') q ,r

and the equivalence of the three norms Nh, N2 and N'3 on K x IC x IC proves theitheorem. +q

COR OLL ARY 4.3. There exist a constant C depending only on the minimal angleByin the triangulation such that

71 < C 773,

TiIEOREM 4.4. There exist constants-Cs, Cd and i7 such that

CS ,73,r - C6 IlI - Pf l, <_ q2,,r < C7 7r

Proof. see [11.



I
THEOREM 4.5- There exists a constants C depending only on the minimal angle

in the triangulation such that

N3 (e, c) <Ca G 13

Also there exist constants C9, CIO, C11 and C1 2 such that

C9 71 - Cloh 2 < N1(e, c) < C11 q7 + C1 2h2

Proof. see [11], [8]. 0

In the next section we verify these comparison inequalities on several numerical
examples, and test the comparative efficiency of the different estimates.

5. Numerical results. In this section we test both the local efficiency of the dif-
ferent estimates as indicators-used to control an automatic mesh adaptation process,
and their global behaviour-as approximations of the discretization error, on several
numerical examples; since we are interested in particular in computing the "effectiv-
ity" ratio q (ratio of the estimated global error to the actual global error), and the
convergence rates on the different sequences of meshes produced by adaptive refine-
ment, two test problems for which an exact solution is known are considered first.
These are a good indication of the general trend and proide a useful insight on the
comparative advantages/drawbacks of the estimates tested, especially on problems
with singularities arising in the solution of the numerical pde's due to discontinuities
in the boundary conditions or in the smoothness of the g-ometry, as is the case in
problems encountered in Computational Fluid Dynamics (Driven Cavity, BackwardCFacing Step,...).

5.1. Disk w;th a Crack. We first test our error estimate on a Stokes flow in a
disk of radius 1 with a crack joining the center to the boundary; the right-hand side
f is 0, and the boundary conditions are

u b = (cos CO - cos 3 -sin ,

where (r, 0) is a polar representation of a point in the disk. The exact solution is then
given by

4 9
U=V/ Ub and p=-7 cos

and is singular at the crack tip. For this example, (v = 1).

We first solve our Stokes problem on a coarse grid (Figure 1(a)), then refine
either uniformly or adaptively, thus creating two sequences of meshes of increasing and
comparable size. Effectivity ratios, defined as the ratios between the estimated norm
of the error (using either one of the norms Ni) to the norm 9f the exact discretization
error. are given for all intermediate meshes -in both uniform and adaptive sequences,
and allow us to compare the relative efficiency of the iji 'as global estimates (see
Tables 1 and 2).
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() (b)()

II

FIG. 1. (a) initial triangulation (b) velocity )() pressure.

Disk - Uniform refinement

NV NT q, q2 q?' q3

N1 N2  N 3  N1  N 2  N 3  N1 N 2  N 3

15 16 0.74 1.68 0.81 0.98 2.24 1.05 1.38 3.22 1.39 1.67
45 64 0.99 1.39 0.99 1.30 1.83 1.25 1.81 2.63 1.65 2.28
153 256 1.10 1.35 1.09 1.45 1.77 1.37 2.03 2.54 1.81 2.57
561 1024 1.13 1.32 1.11 1.49 1.73 1.40 2.07 2.48 1.84 2.66
2145 4096 1.14 1.30 1.12 1.49 1.70 1.40 2.08 2.43 1.85 2.69

() using norm N1

TABLE 1
Global effectivity ratios for a sequence of uniform meshes.

The ratio q is computed using the norm NI for the discretization error; the use
of other norms is not relevant since 213 is not defined by a norm. A comparison with q,
shows also that the corollary 4.3 is satisfied with a c, istant C < 1. All estimates based
on~the solution of a local system seer to perform equally well on adaptive grids and
on uniform meshes, and-the ratios qj, q2 and qi) remain close to 1.00 (asymptotically
exact estimates). As expected the results for the estimate ,3 based only on the norm
of the residuals are not as accurate as those using the estimates based on the solution
of local systems, especially when applied to highly non uniform meshes, as it is th-
case for the adaptive strategy. Alltogether, the estimate 71, associated with the norm
N1 or N3 seem to approximate globally better the discretization error.

Its local behaviour compares also favorably with the others, in the sense that it ul-
timately-produces a higher convergence rate for the solution, as can be seen in Table 3,
even though all estimates appear as good indicators to be used in an adaptive remesh-
ing strategy, yielding gridswhich aren't very different one from each other (Figure 2).
Y11 seems to be also more "asymptotically exact" than the other estimates. Note that
the convergence results are in agreement with [9]. Also, the meshes produced may
not be exactly symmetrical with respect to the axes of symmetry of the problem (in
thi..-c ....t.............l- ... ( ,.p2V4),". Tss o nl-due to the refinement procedure,

according to which thegrids are progressively refined to an increasing target number
of nodes. Hence a triangle might be refined While its symmetric counterpart is not in
order to achieve a particular target value in NV. Further refinement tends to resolve
this non-symmetry, but does not necessarily lead to an exactly symmetric mesh again.

i ( ,
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37r
5.2. -- angular sector. Th6 second test problem is a free Stokes flow in a

circular sector of angle 37r/2; boundary rzonditions are

u = {(,2 _ 1)[cos(2 - ct)0 - cos a0 - -' sin(2 - a)0J - -'(1 + 3,:) sin cor,
2- 1)t(-'(cos(2 - a)0 - cos aO) + sin(2 - a)0I - ( 2 + 3) sin ab}}

856399
where we have a = 1 0.54 and + = _ 1.84. The exact solution iswhe:e e hve =1572864 .-

given by

u = ra ub and p = 2r--(1)( 2 - 1)_{cos(1 - 01)0 - -' sin(1 - ct)0}

and is also singular at the center of the disk, although the degree of singularity is now
lower than in the previous example (a > 0.50).

Tables 4 and 5 are identical-to tables 1 and 2 and confirm the nice features of the
estimate rh .

Note that the convergence rate for this problem is slightly higher than for the
previous problem, according to the fact that the solution is "less singular" at the
origin.

Here convergence rates are almost identical, which is a consequence of an similar
ability from the estimates to resolve the spike in the pressure at the reentrant corner,
by producing comparable levels of refinement at that point (seeFigures 4(a) (b) (c) (d)).

5.3. A smooth solution in a square. In order to test the local behaviour of
the error estimates (we consider here oply the estimate 171 since all indicators lead to
similar meshes), we solve the Stokes pr6blem 1 in a square [0, 7r/2] x (0, r/2], with the
loading term f and the bcundary condition g defined by:

(0,-siny) if z=0
(13) fl = (0,.-4cosxsiny) and gt  (cos y,'O) if x = ir/2

(sinx,0) if y =0

(0,-cosz) if y= r/2

The exact solution to this problem is the smooth function ut = (sin X cos y, - cos z sin y)
and p = 2cosxcosy-8/ir 2 (so that p has average value 0). Figures 5(a)(b)(c) show
that a progressive adaptation of the mesh to the solution using the estimate 17, leads
correctly to almost uniform grids, revealing that no particularly sensitive area was
discovered by the estimate.

We now turn to two classical examples in Computational Fluid Dynamics (driven
cavity problem and backward facing 'step problem) which are good test problems to
-determine the potential of the different estimates presented in this paper.

(,_ 8



______Disk - Ada-)tive refinement

NV(') VT(') qq2 q~t) ______

_ _ _ _ NI N2  N'3  NI N2  A'3  N1I N2 JN 3
15 16 .0.74 1.68 0.81 0.98 12.24 1.05 1.38 3.22 [1.39 1.67
42 64 0.50. 1.30 0.54 1.08 2.23 1.12 -1.44 3.13 1.43 1.98
151 27 0.73 1.37 0.73 1.02 1.96 1.02,, 1.07 2.52 1.05 1.86
558 1045 0.93 1.32 0.88 1.22 1.80 1.13 1.40 2.45 1.28 2.73
2140 4142 1.11 1.29~ 1.03 1.31 1.62 1.19 1.70 2.25 1.51 3.38

(7averagei number of nodes (resp, triangles) obtained when refining the initial miesh using the
different estima tes 771 1) or ni2combined with the norms NI, N2 or N3

()using norm N1

TABLE: 2
Global effeciivity ratios for a sequence Of adapted meshes.

Disk - Convergence Rate
I uniform 771 , '72 772 n73I

NI 0.87 1.46 I1.38 1.31 1.42
N2  0.60 1.11 1l.10 1.07 1.11
N3  0.83 1.41 1.33 1,26 1.37.

'TABLE 3
Global rate of convergence for different ardaptive vs uniform strategies.

(a)(b
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(c) (d)

FIG. 2 Adapted grids using estimates (a) t71 ; (b) '72 ;(c) (i) ; (d) Y13 (NV 558).

Sector - Uniform refinement
NV NT qq2 q:(S) q

,q 3
N1  N2 [N 3  N1  Nr2  P13  N1  P12  NV3

12 12 0.69 1.74 0.76 0.91 2.27 1.00- 1.25 3.23 1.30 1.63
35 48 0.93 1.37 0.91 1.16 1.71 1.10 1.57 2.36 1.42 2.34

117 192 1.07 1.31 1.03 1.34 1.63 1.24 1.82 2.26 1.60 2.72
425 768 1.12 1.29 1.09 1.40 1.60 1.29 1.89 2.20 1.66 2.86
1617 3072 1.13 1.27 1.08 1.40 1.57 1.30 1.90 2.16 1.67 2.91

()using norm Nj

TABLE 4
Global effectivity ratios for a sequence of uniform meshes.

Sector - Adaptive refinement

NV(*) NT(-) q, q2 q(29 _ q3

,, NI N 2 I N 3  N1iI N 2  N.3  NI N 2  N 3

12 12 0.69 1.74 0.76 0.91 2.27 -1.00 1.25 3.23 1.30 1.63
37 55, 0.73 1.38 0.73 1.35 2.27 1.34 1.7u 3.06 1.66 2.08
114 195 0.96 1.57 0.93 0.91 1.84 0.89 1.36 2.82 1.2? 2.34
427 789 1.06 1.41 0.99 1.53 1.98 1.43 1.68 2.50 1.48 2.93
1618 3092 1.21 1.35 1.14 1.56 1.76 1.44 1.86 2.13 1.65 3.57

(*) average number of nodes (resp. triangles) obtained when refining the initial mesh using the

different estimates jTj, n2 or '7(21) combined with the norms N1 , N2 or N3
(") using norm N.

TBLE 5
Global effectivity ratios for a sequence of adapted meshes.
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5.4. Driven cavity problem. The system of equations (1) is solved in a unit
square, with a loading factor f' = (0,0) and a unit tangential boundary velocity

g1 = (1,0) on the top side and (0,0) elsewhere (v = 0.01) The domain is initially
(symmetrically) triangulated into 8 triangles such that no triangle has 2 boundary

edges (Figure 6(a)), and then, refined up to 250 nodes using the estimates i1, 772 , 172
and j73 (Figures 7(a),(b),(c),(d) respectively). The grids obtained are quite identical;
we can however point out that the estimates i7 and 173 produce more regular meshes
(especially at the square's center), even'though all of them seem to nicely resolve the
two discontinuities in the top corners. Note that the meshes are symmetric, because
the refinement process was started with the symmetric coarse grid 6(a). If instead
we, use the initial grid 6(b) and refine it to NV = 250 with q), then the balancer between the two sides is not kept (Fig 8(a)), thus yielding a pressure level much
greater on one side (right, or positive pressure) than on the other. A first remedy
could be to refine at a slower pace, in particular by computing estimates based on
solutions calculated on intermediate meshes, thus reducing the negative effects of the
interpolation procedure (Fig 8(b)). Finally, the initial grid 6(c), with two upper
corner triangles having two boundary edges, leads to the mesh 8(c). The refinement
is then again quasi-symmetric, although it appears to be more localized than on 7(a).

5.5. Backward facing step problem. As a final example we solve the Stokes
equations on a step (Figure 9(a) with a null loading factor f and zero boundary
conditions everywhere except on both left and right sides where parabolic inflow and

- - outflow conditions respectively are prescribed, so that the flux is conserved throughout
the domain. Then, again, it appears from figures 9(b)(c)(d)(e) that the estimates

ill and 73 yield more acceptable meshes than 172 or 1)2
6. Conclusion. All estimates seem to be good indicators of the regions in the

grids requiring refinement and produce quite similar meshes. Although more expensive
to compute than the estimate r3 based only on the residuals (about two times cheaper
than 7)1, and slightly more than two times than 7)2 and i)(i)), the estimates 71 and 7)2
give a more accurate indication of the global error and represent only about a fourth
of the computing time needed for the solution process. We also note that the meshes
produced by the adaptive strategy have local errors in average greater than those
obtained on uniform meshes, but also more uniformly distributed. The estimate 772,

where the total norm (including the bubble term) is considered, appears to give better

results than q('), however not as good as 711.
Finally we can point out that this estimate was obtained by computing some norm

of an error vector (either 9 x 1 or 11 x 1), thus condensing all directional indications,
which could be possibly contained in those vectors, into a single number. Instead,
one could use all components of these vectors to create an error estimate that would
take the directional errors into account, e.g. along the principal directions of the flow
(boundary layers, uni-directional phenomena,...).

( 1
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(a) (b) (c)

DG. 3.(a) initial triangulation ;(b) velocity, (C) pressure,

L Sector - Convergence Rate

j N, 0.99 1.46 1.46 1.45 1.49
N2 0.67 1.11 1.13 1.13 1.16
N3 0.94 1.42 1.42 1.40 1.45

TABLE 6
Global rate of convergence for different adaptive vs uniform strategies.

(a) (b)
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(c) (d)

FIG. 4. Ada p ed grids using estimates (a) -j 1 (b) '72 ( 7(c) ; (d) 73 (NV 427).

(a) (b) (C)

FIG. . A sequence of refined grids on a smooth problem leads to quasi-uniform meshes (a)
initial grid NV 25; (b) NV =394; (c) NV = 1496.

(a) (b)()

D~G. 6. Different initial grids for the driven cavity problem.

14



,- 
M., 4. ,SA

(a)(b

(c) (d)

'FIG. 7. Adapted grids using estimates (a) nj ; (b) 772 ;(C) n2M (d) 173 (NV =250).

(a) (b) (c-)

D G. & (a) grid obtained by refiniement of the initial grid 6(b); (b) same as (a), but the
estimate is now computed from a solution calculated more often during the refinement process; (C)
refined grid starting from the coarse mesh 6(c).



C

(a) initial grid.

(b) refined grid obtained using 712,

ANN

(e) refined grid obtained using r73.
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ABSTRACT

A study is made of two predictor-corrector procedures for the accurate determination of the

global, as well as detailed, static and vibrational response characteristics of plates and shells.

Both procedures use first-order shear deformation theory in the predictor phase, but differ in the

elements of the computational model being adjusted in the corrector phase. The first procedure

calculates a posteriori estimates of the composite correction factors and uses them to adjust the

transverse shear stiffnesses of the plate (or shell). The second procedure calculates a posteriori

( the functional dependence of the displacement components on the thickness coordinate. The )
corrected quantities are then used in conjunction with the three-dimensional equations to obtain

better estimates for the different response quantities. Extensive numerical results are presented

showing the effects of variation in the geometric and lamination parameters for antisymmetri-

cally laminated anisotropic plates, and simply supported multilayered orthotropic cylinders, on

the accuracy of the linear static and free vibrational responses obtained by the predictor-corrector

procedures. Comparison is also made with the solutions obtained by other computational models

based on two-dimensional shear deformation theories. For each problem the standard of corn-

parison is taken to be the analytic three-dimensional elasticity solution. The numerical examples

clearly demonstrate the accuracy and effectiveness of the predictor-corrector procedures.

NOMENCLATURE

1W33, 1133 three-dimensional elastic compliance coefficients

a16, ,1144, 114.5, l.55

_ C1 I, c12 , c22 , C16 , c26 , c66  plane stress reduced stiffness coefficients of different layers

It 1



C , C2 , C3, Cw, cIIt ct12  constanis of- integration (see Eqs. 2to 4 and 7 to 9)

EL, ET elastic moduli in direction of fibers and nomial to it

f I J 2 , fh body force components'in coordinate directions

Gt, Grr shear moduli in plane of fibers and normal to it

h total thickness of plate (or shell)

k", ko, k, , k2  initial and corrected values of composite correction factors

LI, L2 side lengths in the x, and x2 directions (for the cylinder L2 =2tr,,)

M(115 ((Y,p = 1.2) bending stress resultants

m,n Fourier harmonics in the x, and x2 directions

NL total number of layers in the plate (or shell)

N~xp @,p = 1,2) extensional stress resultants

Pt, P2, P intensities of external forces in coordinate directions

pO intensity of normal loading on plate (or cylinder)

Qx m= 1,2) transverse shear stress resultants

r parameter which equals I and Xr(, for plates and cylinders, respec-

tively (see Eq. 9)

r. radius of middle surface of cylinder

U total strain energy of plate (or shell)

U1  strain energy component associated with 011, U22 , U12 and

El I, F22, 2E12

U2  strain energy component associated with 1 3, a23 and 2e13 , 2E23

U3  strain energy component associated with ol3 and e33

(I(/., W .=,2) displacement components in the xcy, x3 coordinate directions
X~v.._X-t NI=1,2)l nrh go0 j'n r ' o%0 ... .. Sm.'G , t~l -_ l.,.. ... I.1

X .Xt •t=I,2) . . ,orthogonal coord atte 1 hla lte, I or shel1)

F-I ltE22, 212 extensional and bending strain components of the middle surface/ , -2K"
(22' K12J of the plate (or shell)
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2F13, 2C23 transverse shear strain components

C33 transverse nomial straincomponent

S= x/hdimensionless transverse coordinate

K,, initial curvature of the middle surface of the cylinder (for plates r,,
1 =0)

= I + x3/r, for cylinders

= I for plates

VLT, VTr Poisson's ratio for the material of individual layers

t = Xa/Lct (a= 1,2 and is not summed) limensionless surface coordinates

p mass density of material

0 , 22, 033 normal stress components

012, 013, 023 shear stress components

(m 1,=2) rotation components

co frequency of vibration of the plate (or shell)

= /a

Superscripts

k = layer number

o = predictions of first-order shear defoniation theory

=(bar over a symbol) response quantities obtained by using three-dimensional elasticity theory

Subscripts

E = three-dimensional elasticity solution

L = direction of fibers

m,n = Fourier harmonics in xj and x2 coordinate directions

T = direction normal to fibers

ct,3=l,2

C
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or L1. 
INTRODUCTION

Since the publication of the first monographs on anisotropic plates mid shells in 1947 and

1961 (Refs. 1. and 2), considerable progress has been made in the analI.,is of laminated and

anisotropic plates and shells. 'Review of the many contributions on this ,subject is given in a

number of monographs (see, for example, Refs. 3 through 17) and survey papers (Refs. 18 to 24).

Most of the early publications were limited to predicting gross -response characteristics

(vibration frequencies, buckling loads, average through-tile-thickness displacements and rota-

tions) of thin laminated plates and shells. The classical lamination theory, based on neglecting

transverse shear strains and transverse normal strains in the plate (or shell) (see, for example,

Refs. 3, 13 and 25) is adequate for this purpose. The expanded use of fibrous composite materi-

als in high-technology industries (aircraft, automotive, shipbuilding and other industries) has

stimulated interest in the accurate prediction of the detailed response and failure characteristics of

laminated anisotropic plates and shells. Several modeling approachesliave been proposed which

Al take into account the relatively low elastic moduli in the lateral and transverse directions. Some

of these modeling approaches are extensions of similar approaches used for isotropic plates and

shells and include: I) three-dimensional and quasi-three-dimensional elasticity models (Refs. 26

to 33); 2) first-order shear defomiation theories based on linear displacement and/or piecewise

linear stress variation through-the-thickness of the entire laminate (see, for example, Refs. 34 to

38); and 3) higher-order shear-deformation theories based on nonlinear (or piecewise linear)

variation of displacements; and/or nonlinear variation of stresses through the thickness (Refs. 14

and 39 to 47).

In quasi-three-dimensional models simplifying assumptions are made regarding the stress

(or strain) state in the laminate (or in the individual layers), but no a priori assumptions are made

about the distribution of the different response characteristics in the thickness direction. The use

of both three-dimensional and quasi-three-dimensional models for predicting the response

characteristics of laminated anisotropic plates and shells with complicated geometry is comput-

ationally expensive, and therefore, may not be feasible for practical composite plates anid shells.

Experience with two-dimensional shear deformation theories has shown them to be

( inadequate for-the accurate prediction of transverse stresses and deforniations. This is particu-
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C larly true when first-order theories (in which the transverse shear strains are assumed to be

f .constant in the thickness directio (Ref. 1)) are used for analyzing medium-thick and thick plates

and shelI. The range of validity of first-order shear defoniation theory was, found to be strongly

dependent on the factors -used in adjusting the transverse shear stiffnesses of the laminate (see

Refs. 22, 48 and 49).

A simple approach for the accurate evaluation of transverse stresses and strains in

medium-thick composite plates and shells is to use a two-dimeniioial shear deformation theory

for calculating the in-plane stresses, and then the three-dimensional equilibrium equations to

determine the trasverse stresses. An improvement of this approach was proposed (Refs. 33 and

49) in which better estimates are obtained for the transverse shear stiffnesses and then used to

correct the gross response characteristics, which are in turn used in evaluating the transverse

stresses. The present study extends the idea ?f using the information obtained from a sitple

two-dimensiomal shear deformation theory to correct certain key elements of the computational

model (in an inexpensive, postprocessing mode), and hence, improve the response predictions.

Specifically, the objectives of the present paper are: a) to assess the accuracy of two predictor-

corrector procedures forcalculating the detailed response characteristics of multilayered compos-

ite plates and shells, and b) tn discuss the potential of using these procedures in solving practical

plate and shell problems.

Both predictor-corrector procedures use first-order shear deformation theory in the predic-

tor phase .,ut differ in the elements of the computational model being corrected, namely: a)

correcting transverse shear stiffnesses; or b) correcting the thickness distribution of displace-

lients. The first procedure is described hn Refs. 33 and 49, and the details of the second proce..

dure are presented here for the first time.

The composite plates and shells considered herein consist of a number of perfectly bonded

layers. The individual layers.are assumed to be homoogeneous. At each point of the structure a

plane of. elastic symmetry exists, parallel to the middle surface The sign. convention -for the

different displacement and stress components is shown in 'Fig. I. Both antisymmetrically

.laminated composite plates and orthotropic multilayered cylinders are considered.

In order to obtain-analytic solutions for the antisymmetrically laminated, plates, each of the
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displacement parameters, Straincomponents and stress resultants is decomposed into symmetric

and antisymmetric components in the thickness coordinate. Different double Fourier series

expansions, in the surface coordinates, aie used for the symmetric and antisymmetric compo-

nents (see Refs. 50 and 5 1). For both the plates and cylinders the solutions and the external

surface loads are assumed to be periodic in the surface coordinates. Extensive numerical results

are presented showing the effects of variation in the~lamination and geometric parameters of the

pl'tes and cylinders on the accuracy of the static and vibrational responses predicted by the

first-order shear-deformation theory, as well as by the two predictor-corrector approaches. The

standard of comparison is taken to be the exact three-dimensional elasticity solutions.

2. BASIC IDEA OF PREDICTOR-CORRECTOR PROCEDURES

The predictor-corrector procedures used in the present study are iterational processes in

which the information obtained in the first (predictor) phase of the analysis is used to correct key

elements of the computational model, and hence, improve the response predictions. Numerical

experiments have shown that only one iteration is needed (in the corrector phase) to obtain highly

accurate response predictions.

Two predictor.corrector procedures are considered in the present study, both use first-order

shear-deformation theory in ihe predictor phase to calculate initial estimates for the gross re-

sponse characteristics of the structure (vibration frequencics, average through-the-thickness

displacements and rotations), as well as the in-plane stresses; then three-dimensional equilibrium

equations and constitutive relations are user, to calculate transvcrse shear and transverse normal

stresses and strains.

The two procedures differ in the elements of the computational model being adjusted in the

corrector phase. The first procedure calculates a rsteriori estimates of the composite correction

factors and uses them to adjust the transverse shear stiffnesses of the plate (or shell). By con-

trast, the second procedure calculates a posteriori the functional dependence of the displacement

components on the thickness coordinate. The corrected quantities are then used in conjiunction

with the three-dimensional equadions to obtain better estimates for the different response qtian-

( tities. A schematic representation of the different steps involved in the two predictor-corrector
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C procedures is given in Fig. 2. The detailsof the first procedure are given in.Re-fs. 33 and 49, and

the application of the second procedure to static and free vibration problems of multilayered

composite plates and cy-ndrical shells is outlined subsequently. Thesuperscript o refers to 'he

predictions of the first-order shear deformation theory; and a bar (-) oVer a symbol refers to the

response quantities obtained by using three-dimensional elasticity equations.

2.1 Static Analysis

The sequence of steps involved in the calculation of stresses and displacements are as

follows:

A. Predictor Phase

A first-order shear deformation theory is used with an initiai set of composite correction

factors k:' to evaluat,., through-the-thickness displacements w1 " ; rotation components *t:

middle surface strains a,,d curvature changes ''l,, K,, average transverse shear strains 2, 3 and

stress resultants N" , , Q, (o,13 = 1,2). The sign convention for the generalized displace-
(XII M(X) % ( a,

(ments and stress resultants is shown in Fig. 1.

Then the in-plane stresses in the kth layer, (3')p, are calculated by using the equations:

0 (k) 0. Ki' 0
Oil '-l12 C1 -() e l1

{o2} =[ C22 C26{ +KJ3 (I)

in which the c's are the plane stress reduced stiffness coefficients of the kth layer (see Refs. 52

and 53). For convenience the superscript (k) will be dropped in most of the succeeding steps.

Next, tie transverse shear and normal stresses ,re obtained by integrating the three-

dimensional equilibrium equations in the thickness direction as follows:

f, (-"I [ O( 'l, + a2'(1 + X ,tI ] d x, 4. , (2)
-'h/2

x3

/- i2
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1=-. 1 +a 2u 23  2 o +.f3 dx3 +C 3  (4)

- 1J/2

where X=I for plates, and X = 1+ x3/r o for cylinders; K,,=0 for plates; and K, = I/r,, for cylinders (

r,, is the radius of the middle surface); c, , c2 and c3 are integration constants obtained from the

stress conditions at the outer surfaces of the laminate; and .f I, f2 and f3 are body force conpo-

nents in the coordinate directions; and r)(= a/x,,. Note that because of the discontinuity of

C I , 022 and o7'.2 at layer interfaces, the integrations in Eqs. 2 to 4 are performed in a piecewise

manner (layer by layer).

The transverse shear and transverse nomial strains are obtained from the following three-

din.,ensional constitutive relations:

f2ifl 1 1 -P _,'4i fi4 (5)
t2E23 -L-145 a44 /102315

-33 = 131 0'1'1 + 1-12 o'2 + -r3 6 O72 + 133 U33 (6)

in which the a' s are three-dimensional compliance coefficients (see Refs. 52 and 53).

The distribution of the displacement components in the thickness direction is obtained by

integrating the three-dimensional transverse strain-displacement relationships as follows:
I X3

f. 33 dx3 + cw (7)
- hi12

x3

U =J (2l3 -" )W)dx 3 +Cul (8)

j X= -
3 ! (29'23 - 2 W)dx 3 + cU2 (9)

where r=l for plates, and r=Xr,, for cylinders: and Cw, C1 1 C12 Ind are integration constants,

r( which are obtained by setting UiI , 12 and W at x3 =() to be equal to the corresponding displace-

ments of the first-order shear deformation theory.
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i... B. Corrector Phase

The calculation of the corrected response characteristics of the plate (or shell) may be

conveniently divided into three steps, namely: 1) generation of coordinate (basis) displacement

functions; 2) computation of amplitudes of the coordinate functions, and evaluation of corrected

through-the-thickness distribution of displacements; and 3) calculation of through-the-thickness

distributions of in-plane strains, in-plane stresses, and transverse stresses using the three-

dimensional strain-displacenent, constitutive relations, and equilibrium equations. The first two

steps are described subsequently.

I. Gen:eration (?f Coordinate (Basis) Displacement Functions. Each of the three displace-

ment components uI , W, Eqs. 7 to 9, is decomposed into symmetric and antisymmetric

functions of the thickness coordinate x3: each of the symmetric components is further subdivided

into a constant component (vr:.l . ,& the displacement at the middle surface) and a nonlinear

function in x3. Similarly, each -:,; -"e antisymmetric components is decomposed into a linear and

(a nonlinear function of x3. In tfll present study the linear functions for the in-plane displace-

ments were chosen to be [he average through-the-thickness rotation components (used in the

first-order shear deformation theory), and the linear function i -r the transverse displacement was

chosen such that the value of the nonlinear component at the outer surfaces was zero.

2. Computtion of Amplitudes of the Coordinate Functions. The resulting four

symietric/antisymmetric functions, associated with each of the displacement components,

U, , U2, W, are now chosen as coordinate (or basis functions), and the displacement component is

expressed as a linear combination of the four functions, with unknown parameters (representing

the amplitudes of the coordinate functions, or displacement modes).

The twelve unknown parameters are obtained by using the Rayleigh-Ritz technique in

conjunction with the mirinum potential energy principle (based on the three-dimensional

elasticity equations).

2.2 Free Vibration Analysis

In the predictor phase the first-order shear deformation is used to obtain estimates for the

eigenvalues (U,\2, average through-the-thickness modal displacements, and rotation components
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as well as the in-plane stresses. The body force components .f , f2 and f3 in Eqs. 2 to 4 are set

equal to the inertia forces, i.e.,

11+ X3 1

¢" (10)
f P( 2 + X3

in which p is the mass density of the material. Equations 5 to 9 are then used to obtain the

distributions of transverse strains and displacements in the thickness direction.

In the second step of the corrector phase, I lamilton's principle is used to generate a

generalized matrix eigenvalue problem from which the corrected vibration frequency and eigen-

vectors (vectors of amplitudes of displacement coordinate functions) are calculated.

2.3 Comments on the Predictor-Corrector Computational Procedure

The following comments on the computational procedure are in order:

I. Because of the assumed through-the-thickness linear distribution of strains in the

first-order shear deformation theory, and the associated piecewise linear distribution of stresses,

the transverse stresses obtained from Eqs. 2 to 4 may not saitsfy till the stress conditions at the

tol) cmci Iottom strfaces. midci at layer interqftces. This is pairticularly true for laminated cylinders.

The accuracy of the transverse stresses obtained by the predictor-corrector procedure may be

somewhat sensitive to which conditions are satisfied. Numerical experiments have shown that

good accuracy is obtained when the stress conditions at both the top and bottom surfaces are

satisfied, and the discontinuities in the transverse stresses occur at or near the middle surface.

These transverse stress discontinuities can be eliminated by using an error distribution procedure.

Such a procedure was not used in the present study.

2. In the corrector phase a mixed formulation can be used in which the fundamental

unknowns consist of the three displacement components and the three transverse stress com-

ponents. The appropriate variational principle to be used in the computation of amplitudes of

coordinte f, tt. ti, , that pr ,stc.,n-, ........ (re f. 54an 55).

( 3. NUMERICAL STUDIES

To assess the accuracy and effectiveness of predictor-corrector computational procedures,
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I a large number of stress and free vibration problems of multilayered composite plates and

cylinders have been solved by tiese techniqtues. The composite plates considered in the present

study are square laminates with L, =L 2 =1.0, and have antisymmetric laminat.on with respect to

the middle plane. Both the static loading, audthe solutions considered, are periodic in x! and x2

with periods 21,1 and 2L2 for plates (2L, and 2L2 for cylinders). The -composite cylinders

consilered are simply supported laminated circular cylinders. The fibers of the different layers

alternate between the circumferential and longioidinal directions, with the fibers of the top layers

running in the circumferential direction.

The material characteristics of the individual layers were taken to be those typical of

high-modulus fibrous composites, namely:

EL/ET' 15, GLT/ET=0.5, G1-/;T~=0. 3356, vLT =0.3, v-r =0.49

where subscript L refers to the direction of fibers and subscript T refers to the transverse direc-

tion; and vLT is the major Poisson's ratio. For static stress analysis problems the plates and

cylinders were subjected to sinusoidal nornal loading. For plates the loading was antisymmetric

in the xi direction and was nomai to the top and bottom surfaces. The total normal loading

p=p, sin n:j sin r 2 . For cylinders the loading was normal to the inner surface of the cylinder

and ]ad the form p=p,, sin nrtl cos 2itn 2. For free vibration problems only the lowest frequen-

cies for each pair of m,n were considered along with the associated mode shapes and modal

stresses.

For each problem, the solutions obtained by the predictor-corrector procedures were

compared with the predictions of five different modeling approaches based on two-dimensional

shear-deformation plate and shell theories. The five modeling approaches are: first-order shear

deformation theory based on linear variation of u(, and constant w through the thickness: first-

order theory based on linear variation of u,,. and w through the thickness- higher-order theory

with quintic variation of u(, and w through the thickness; simplified higher-order theory based on

cubic variation of u,, and constant w through the thickness, with the conditions of zero transverse

shear stresses imposed at the outer surfaces of the plate (or shell) to reduce the number of

generalized-displtcement parameters; and discrete-layer theory with piecewise linear distribution
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of tf(x and constant w in the thickness direction. The modeling approaches considered are listed

in Table I, and will henceforth be referred to as models I through 5. The predictor-corrector

procedures will be referred to as models 6and 6A (see Table I). The standard of comparison is

taken to he the analytic three-dimensional elasticity solutions. The methods of obtaining these

solutions are outlined in Refs. 39, 50 and 56 for plates and cylinders, respectively.

For plates, three parameters were varied, namely, the thickness ratio of the plate, h/Li; the

number of layers, NL; and the fiber orientation angle of the individual layers, 0. The thickness

ratio was varied between 0.01 and 0.4; the number of layers was varied between 2 and 20: and 0

was varied between 0" ahd 45". The wave numbers in the x, and x2 directions were selected to be

I, and the aspect ratio, L1/L2, was also selected to be 1.0. For cylinders, three parameters were

varied, namely, the number of layers, NL; the thickness ratio h/r,; and the circumferential wave

number, n. The longitudinal wave number was selected to be 1, and the length-to-radius ratio,

L/r,, was also selected to be I.0. The number of layers was varied between 2 and 20; /r,

between 0.01 and 0.3, and n between 0 and 10.

As a step towards establishing the range of validity of the predicior-corrector procedures.

the total strain energy of the structure was decomposed into three components: U I associated

With (T,11 and Cull; U2 associated with a(,3 find 2q,3; and U3 associated with CT33 and C3.

U 3 = I 33 E3 dV . The total strain of the structure U = U, + U2 + U3. The assessment of

the accuracy of the predictor-corrector procedures included both global response characteristics

(vibration frequencies and strain energy components), as well as detailed stress and diplacement

distributions in the thickness direction.

Typical results are prented in Figs. 3 to 5, Tables 2 and 3 for the antisymmetrically

laminated plates, and in Figs. 6 to 8 and Tables 4 and 5 for the simply-supported cylinders.

The effe,;ts of variation of the three parameters h/Lt, NL and 0 for plates (and NL, h/rO and

n for cylinders) on the minimum vibration frequencies, and the energy components U I, U.2 , U3

( " obtained by the three-dimensional elasticity model are depicted in Table 2 and Fig. 3 for plates

and in Table 4 and Fig. 6 for cylinders.



-"- C An indication of the accuracy of the minimum vibration frequencies and energy compo-

nents obtained by the predictor-corrector procedures, and other computational models listed in

Table 1, is given in Figures 4, 5, 7 and 8, and in Tables 2 and 4. Figures 4 and 7 show the effects

of h/Li for plates and, h/r, and n for cylinders, on the accuracy of the strain energy components

obtained by different models. Tables 2 and 4 give an indication of the effect of different plate and

cylinder parameters on the acciracy of the minimum frequencies obtained by tie different

models. Figures 5 and 8 give an indication of the accuracy of the displacement, stress, and

transverse shear strain energy distributions predicted by different models. In Figure 5 both the

symmetric and antisymmetric parts of the response quantities (with respect to the middle plane)

are shown. The symmetric uis, o' I.s, 033.,S, and antisymmetric O'13.A, U 13.A are shaded in Fig.

5. The antisymmetric wA are approximately zero. Note that since the symmetric and antisym-

metric components of each response quantity are multiplied by different trigonometric functions

in x, and x2 (sec Refs. 50 andv 51), the value of the response quantity is a linear combination of

the two components. In Tables 3 and 5 the maximum absolute values are given for the displace- )
ments, stresses and transverse shear strain energy densities obtained by the three-dimensional

elasticity model for plates and cylinders.

An examination of Tables 2 and 4 and Figures 3 to 8 reveals:

I. The transverse shear strain energy ratio, UJ2/U, increases with the increase in h/L1, 0

and NL for plates (h/r,, n and NL for cylinders). The increase in U2/U is associated with a

decrease in the ratio U1 /U. On the other hand, for all the vibration problems considered, U3/U

was found to be very small (less than 1 %). For statically loaded plates, U3 /U approaches 2.2%

for thick multilayered plates with h/L,=0.3 and NL.10 (Fig. 3) and 36.9% for multilayered

cylinders with'h/r,,=0.3, n>8 and NL>_10 (see Fig. 6).

2. As expected, the accuracy of the first-order shetar deformation theory (models I and

IA) decreases as h/L1 , and 0 increase for plates (i/t', andi n for cylinders). The range of validity

of the first-order theory is strongly dependent on the values of the composite shear correction

(-j factors used, k', and k2 (see Tables 2 and-4). The errors in the predictions of model IA (with

kI and k2 computed from the cylindrical bending condition of Refs. 57 and 58) are considerably
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lower than those of model I.

3. Despite the larger number of displacement parameters of model 2, its predictions are

generally less accurate than those of model I (see Figures 4 and 7a). This is attributed to the

assumption of constant transverse normal strain, and piecewise constant transverse normal

stresses, through the thickness in model 2, which result in considerably overestimnating the

in-plane stresses aq. An exception to that is the case of statically loaded thick cylinders with

h/r,, > 0.2. Because of tls importance of transverse normal stresses, the predictions of model 2

are more accurate than those of model I (see Fig. 7b).

4. For the entire range of parameters considered, the global response characteristics

predicted by the higher-order shear deformation theory (model 3) are fairly accurate (see Tables

2 and 4 and Figures 4 and 7). However, the distribution of transverse stresses through the

thickness obtained by model 3 is not as accurate as the gross response characteristics (results not

shown).

5. For plates with h/Ll < 0.2 (and cylinders with h/r,, < 0.2 and n < 8) the gross response

* . characteristics predicted by the simplified higher-order theory (model 4) are fairly accurate. A

rapid degradation in accuracy as the ratio h/L1 for plates (or the ratio h/rO For cylinders) increases

beyond 0.2.

6. When the transverse normal stresses CF33 are not significant (or the ratio U3 /U is small),

the global response characteristics predicted by the discrete-layer theory (model 5) are fairly

accurate (see Figs. 4 and 7). Note that for NL > 8 the number of displacement parameters used in

this model exceed those used in all other models.

7. The predictor-corrector procedures (models 6 and 6A) appear to be very effective

approaches for the accurate determination of the global, as well as detailed response characteris-

tics of plates and cylinders. This is particularly true for model 6A which generates very accurate

transverse stresses, even for very thick shells (see Figs. 5 and 8). Specifically, the following

three observations on model 6 can be noted:

a) The numerical values of the corrected composite shear correction factors, k I and k2, are

Qj,._" fairly insensitive to their initial values. k and k, used in the first-order shear deformation
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theory. They depend on the distributions of the transverse shear strains in the thickness direction

which, in -turn, are functions of both the lamination and geometric parameters of the plate (or

cylinder).

b) If k and k are both selected to be I, the error in the global response quantities ob-

tained in the first (predictor) phase, for plates with h/Lt > 0.2 (or cylinders with h/r) > 0.2 and

n_.4), may be unacceptable; however, the corrector phase improves these predictions substan-

tially, and results in highly accurate distributions of displacements and stresses through the

thickness (see Figs. 4, 5, 7 and 8).

c) The accuracy of the response quantities obtained using the predictor-corrector proce-

dure is insensitive to the initial shear correction factors selected. It is also insensitive to the

selection of the reanalysis procedure in the correction phase. For example, when the calculated

composite correction factors are much different from their initial values, a first-order Taylor

series approximation (with respect to the composite correction factors) provides sufficiently

accurate estimates for the response quantities (see Ref. 51). )
The aforementioned observations point to the fact that accurate prediction of the distribu-

tion of stresses and displacements through the thickness of multilayered plates and cylinders

.quires the use of three-dimensio,al equilibrium and constitutive relations. These equations can

'be used in an inexpensive, postporcessing mode with any of the modeling approaches based on

two-dimensional theories. The predictor-corrector procedures have the advantage of starting

with a simple first-order theory in the first phase to obtain estimates for the global response

characteristics, and then modifying the key elements of the computational model be-ore calculat-

ing the displacement distribution in the thickness direction.

4. POTENTIAL OF TIlE PREDICTOR-CORRECTOR PROCEDURES

The predictor-corrector procedures -,zpear to have high potential for the accurate predic-

tion of vibration frequencies, stresses and defornations in multilayered composite plates and

shells. The numerical studies conducted for antisynmetrically laminated anisotropic plates and

simply supported orihotropic cylinders demonstrated the accuracy and effectiveness of the

predictor-corrector procedures. In particular, the following points are worth mentioning:

15



X, 1. The predictor-corrector procedures can be applied, in conjunction with finite element

models, to the analysis of anisotropic plates and shells with arbitrary geometry. The calculation

of the transverse stresses, and the correction phase (including the calculation of composite shear

correction factors in model 6 and the thickness distribution of the in-plane and transverse dis-

placements in model, 6A) can be performed on the element level for selected elements (in the

critical regions of the plate and shell models).

2. Although any of the two-dimensional shear-deformation plate and shell theories can be

used in the first (predictor) phase of the predictor-corrector procedures, the first-order shear

deformation theory has the following two major advantages over other theories: a) only five

displacement parameters are used to describe tie deformation; and b) in the finite element

implementation only C continuity is required. The simplified higher-order theories (model 4)

and a simplified discrete-layer theory (see Refs. 22 and 24) share the first advantage, but require

C' continuity in their finite element implementation.

5. CONCLUDING REMARKS

A study is made of two predictor-corrector procedures for the accurate determination of the

global as well as detailed response characteristics of plates and shells. Both procedures can be

thought of as iterational processes in which the information obtained in the first (predictor) phase

of the analysis is used to correct key elements of the computational model, and hence, improve
tie response predictions. The two predictor-corrector p;-ocedures use first-order shear-

deformation tleory in the predictor phase to calculate initial estimates for the gross response

characteristics of the structure (vibration freqtuencies, average through-the-thickness displace-

ments and rotations), as well as in-plane stresses; then three-dimensional equilibrium equations

and constitutive relations i.re used to-calculate transverse shear and transverse normal stresses

and strains. The two procedures differ in the elements of the computational model being ad-

justed in the corrector phase. The first-procedure calculatesa posterioii estimates of tle compos-

ite correction factors and uses them to adjust the transverse shear stiffnesses of the plate (or

( , shell). The second procedure calculates a posteriori the functional depenldence of the displace-

nment cotmlnnorents on the thickness coordinate. The corr.cted quantities are then used in conjunc-
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tion with the three-dimetnsional equations to obtain better estimates for the different response

quantities.

Extensive numerical results are presented for multilayered antisymmetrically laminated

plates and siniply-supported orthotropic cylinders, showing the effects of variation in the geomet-

ric and lamination parameters on the accuracy of the static and free vibrational responses ob-

tained by the predictor-corrector procedures. For each problem the standard of comparison is

taken to be the analytic three-dimensional elasticity solution. Comparison is also made with

solutions obtained by five computational models based on first-order as well as higher-order

two-dimensional shear deformation theories. The five computational models are: first-order

shear deformation theory based on linear variation of u, and constant w through the thickness;

first-order theory based on linear variation of u(,, and w through the thickness; higher-order

theory with quintic variation of u(. and w through the thickness; sirplified higher-order theory

based on cubic variation of u(, and constant w through the thickness, with the conditions of zero

, transverse shear stresses imposed at the outer surfaces of the plate (or shell) to reduce the number

of generalized displacement parameters; discrete-layer theory with piecewise linear distribution

of u(, and constant w in the thickness direction.

On the basis of the numerical results the following conclusions are justified:

I. As has been reported previously (Refs. 22, 24 and 48), the accuracy of the predictions

of first-order shear deformation theory is strongly dependent on the values of the composite-

correction factors. The use of the composite shear correction factors proposed in Refs. 57 and 58

results in fairly accurate gross response characteristics for a wide range of lamination and geo-

metric parameters.

2. The gross response characteristics predicted by higher-order shear deformation theories

are fairly accurate for a wide range of geometric and lamination parameters. Nowever, the

accurate prediction of the transverse stress and displacement distributions through the thickness

is, imil.lfllayere! plates and sheflls requires Ohe use olf |Ihee-dimlensionai equilibrium aind constitu-

tive relations. These equations can be used ini an inexpensive, postprocessing mode with any of

the-modeling approaches based on two-dimensional theories.

3. The predictor-corrector procedures appe:r to be very effective procedures for the
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I -accurate determination of'the global as well as the detailed response characteristics of plates and

F shells. The accuracy of the response quantities obtained in the first (predictol') phase of

laminates with thickness-to-wavelength (of the deformation) ratio of the order of 0.2 may be

unacceptable. However, the corrector phase improves the predictions substantially and results in

highly accurate distributions of displacements and stresses through the thickness. This is riarticu-

larly true for the procedure based on calculating a posteriori the functional dependence of the

displacements on the thickness coordinate. This procedure works well even for thick laminates

with thickness-to-wavelength ratio of the order of 0.5.
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Table I - Modeling Approaches Used in the Numerical Studies

Through-the- Constraint
Thickness Conditions Total Number

Model Displacement on of Displacement
No. Description Assumptions Stresses Parameters

.1, IA First-order shear - linear u,u 2  033=0 5

deformation theory * constant w
2 First-order theory linear u,u 2  none 6

with transverse and w
normal stresses
and strains included

3 Higher-order shear quintic u1,u2  none 18

deformation theory and w
4 Simplified higher- - cubic u1,u2  033=0 throughout 5

order theory * constant w and 013 and 023=0

at top and bottom
surfaces

5 Discrete layer - piecewise 033=0 2xNL+3

theory linear u 1,tt2 throughout
* constant w

(through-the-
.... thickness)

6, 6A Predictor-corrector Predictor Phase Predictor Phase 5

procedures ° linear un,u 2  033 =0

° constant w

Corrector Phase Corrector Phase
See Note 2 None

Notes: 1) In model 1, k1 =k2 =l, and in model IA, they are computed from the cylindrical
bending condition of Refs. 57 and 58.

2) In model 6, the corrector phase is based on adjusting tile transverse shear stif-
fnesses (see Refs. 33 and 49) and in model 6A it is based on correcting the thickness distribution
of the in-plane and transverse-displacement components.
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Table 3 - Maximlum absolute vlues of displacements, stresses and transverse shear' strain
energy density obtained by the three-dimensional elasticity model. Antisymmetrically

laminated composite plates Subjected to static loading
p-=po sin ir~j sin 7r4 2 , h/L, =-0.3, NL=l10 and 0=45' (see Fig. 5).

Quantity Maximum Absolute Valule

U IA ET/Po) 1 .354

ws ET/P, 11 2.19

191 ,A /Po 2.48

a 13S /Po .730

1933,A /Po .500

U1355 
13r/( pa) 2  .662

Note: Subscripts S and A refer to the symmetric and antisymmetric components (in the thickness
coordinate x3).

26



C-0 C ) ( 0 CO O O>O Q)O ) 0

in 00 00 0n0 00 m nm 1 C
C>4 0 C- m m 4 C1 w - w w 01% - - -I m- m 't00

. a '0 0 DC )0 C O %C O \CNC . Nc \c l

bl0 0 000)~ l

on 00 -tC100CCDc.C) CD c n C) 0 C : ) )C - - --- !

o CD N )0C )C D CCC0OD OCCC

4) C ) 0 
i0 - n - C 7 0 O ( . n -.

C)4 0 0 0 000 90 00 00 0 (= )-- I 4NI t nIO0
0 CD ---- - -C) C)- CD CD - -) CD-C D0 DC )C I

r.10 C C -e t r- c3\ )N r- -o, ocNgqa

r) V

A 0 IS

0 n- 
00 4)

Q C3

o . t4

tn v .r 0C -\ - C1C z n ,t
a C C C) -I i m in \0 t- C In - rf0 0)\ wCm C 0

c-jC' Qj -4- In t x C f

0Q~o 9 o o90 0 O 0 e
0

=;) C\ i.. -\ .- ct 0 C -0 in in ) C\..o1 0 N 0 t-C1 "t00 t'tWC\ V r
o0 C\ 91 0\ \0-f 0 - - r - \ )- rtII P -

C/ sI - - - -4 - N - 1 - f -1 It - n - 0 - r- 04 0 5-4 o- 3

o-r r( tnc' O -0\0 004
Ot if 0n -OQcoIa 00 roo 0Nnt00 in Crf,0f)

M if r- a\Fc00'N-l-0 C 1 C u

C..'

I. Nl m in \.. r-- Nc ) clo , n \ -o ;

27



Table 5 - Relative magnitudes of the maximum displacements and stresses
obtained by the three-dimensional elasticity model. Simply supported

composite cylinders subjected to internal normal pressure
p=p,, sin ir l cos 2r42 , h/r=0.3, NL=I0 and L/r, =1.0 (see Fig. 8).

Quantity Maximum Absolute Value

LI ET/po h 0.489

u2 ET/p(, Ii 1.24

W ET/p0 h 2.18

(IlI/P, 5.18

(12/Po .643

3 013/Po .566

U 13 El"/(P0)2  .476

(
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